MIDAS WEBINAR ON

PEDESTRIAN STEEL COMPOSITE BRIDGE & DYNAMIC ANALYSIS PEDESTRIAN BRIDGES

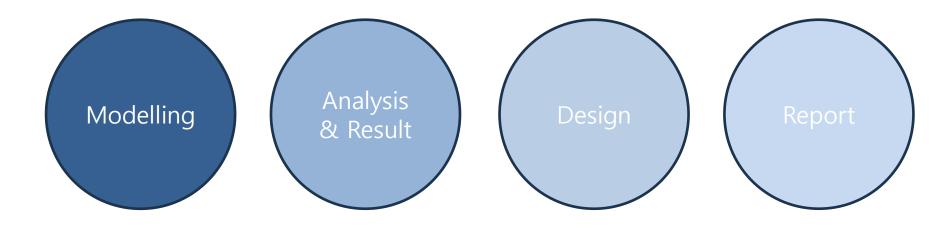
CONTENTS

Introduction

- Steel Composite bridge
- Eurocode consideration in Midas Civi

Modelling

• Load Application (Static, Moving, Dynamic, Thermal)



Analysis & Result

- Deformation
- Forces and Moment

1.1 Introduction

- Wizard
- Manual Modelling
- Drawing Import

- Static Load
- Moving Load
- Thermal Load
- Dynamic Load

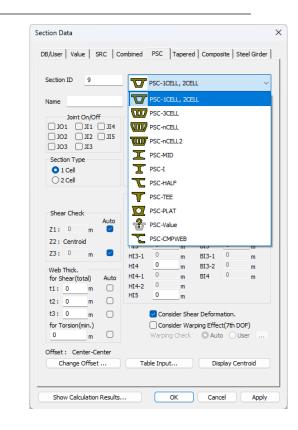
- ULS check
- SLS check

 Auto-generate design report

1.2 Material and Section Properties

Material Data						
General						
Material ID 1		Na	me	S355		
Elasticity Data						
Type of Design Stee	el 🗸	Steel				
		Sta	indard	EN05(S)	~	
			DB	S355	^	
				S355 S450	*	l
				S275N/NL		ł
		Conci	rete	S355N/NL		l
		Sta	indard	S420N/NL S460N/NL		l
Type of Material		C	ode	S275M/ML		l
O Isotropic	Orthotropic		DB	S355M/ML		ł
	Chinotopic			S420M/ML S460M/ML		ł
Steel				S235W		ł
Modulus of Elasticity	2.100	0e+08	kN/m²	\$355W		l
Poisson's Ratio		0.3		S460Q/QL/QL1 Y1670S7(15.2mm)		l
Thermal Coefficient	6,66	67e-06	1/[F]	Y1770S7(9.3mm)		l
		76.98	kN/m ³	Y1770S7(9.6mm) Y1770S7(11.0mm)		l
Weight Density				Y1770S7(12.5mm)		l
Use Mass Density		7.85	kN/m³/g	Y1770S7(12.9mm)		l
				Y1770S7(15.2mm) Y1770S7(15.3mm)		ł
		0 00		Y1770S7(15.7mm)		l
Modulus of Elasticity	0.000	0e+00	kN/m²	Y1860S7(9.3mm)		l
Poisson's Ratio		0		Y1860S7(9.6mm) Y1860S7(11.0mm)		l
Thermal Coefficient	0.000	0e+00	1/[F]	Y1860S7(11.3mm)		
Weight Density		0	kN/m³	Y1860S7(12.5mm)		
Use Mass Density		0	kN/m³/g	Y1860S7(12.9mm) Y1860S7(13.0mm)		
- Use mass Density		0	K19/11/79	Y1860S7(15.2mm)	-	

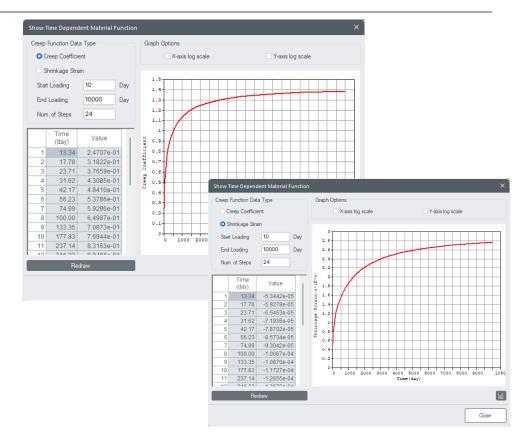
Steel material specific to EN Standard


laterial Data						:
General						
Material ID	2		Na	me	C50/60	
Elasticity Data			Steel			
Type of Design	Concre	te 🗸				
				ndard		~
	DB			~		
			Conce	ete		
			Sta	ndard	EN04(RC)	~
Type of Material			Code			~
 Isotropic 	Or	thotropic	1	DB	C50/60	^
Steel					C12/15 C16/20	- 1
Modulus of Elasticit	v	0.000	0e+00	kN/m²	C20/25	
Poisson's Ratio	3	0.000	00100	KIWIII	C25/30 C30/37	
Thermal Coefficient		0.000	0e+00	1 (17)	C35/45	
		0.000		1/[F]	C40/50 C45/55	
Weight Density			0	kN/m³	C50/60	
Use Mass Densit	ty		0	kN/m³/g	C55/67 C60/75	
					C70/85	
Modulus of Elasticit	v	3,727	7e+07	kN/m²	C80/95 C90/105	
Poisson's Ratio	,	0.727	0.2	N 17/11	0007100	
Thermal Coefficient		5 5 5 5	6e-06	1/[[]		
		0.000				
Weight Density			25	kN/m³		
Use Mass Densit	ty		2.549	kN/m³/g	1	

RC material for EN Standard

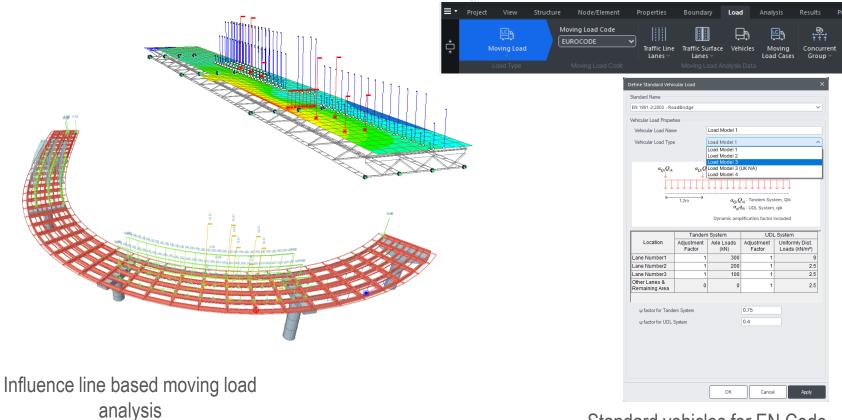
1.2 Material and Section Properties

Select	PSC DB					×
Code	UK	~	Туре	UK-M		^
Select	DB			UK-M		
1:M1				UK-UMB		
2:M				UK-MY UK-MYE		
3:M2	2			UK-Solid E	lox	
4:M3				UK-SY		
5:M4 6:M5				UK-SYE		
7:M				UK-T		
8:M7	7			UK-TY(Rel		
9:M8				UK-TYE(Re UK-TY	ebate)	
10:M				UK-TYE		
TL.M	10			UK-U_SU		
				UK-W		
				UK-Y		
				UK-YE UK-UM		
				ок	Cancel	

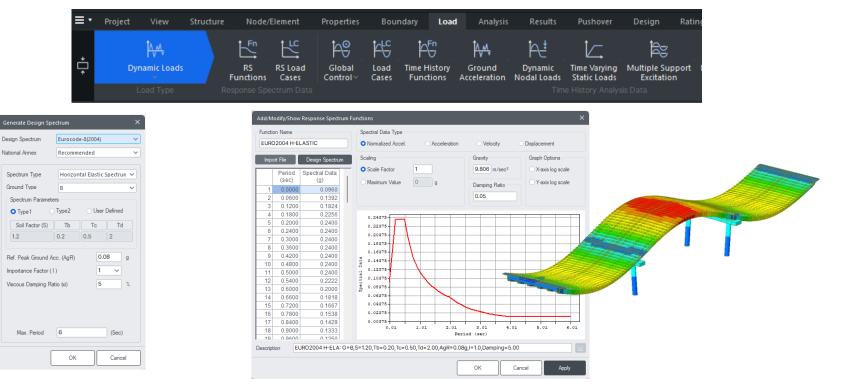

And much more...

EN- Standard Section

1.2 Material and Section Properties

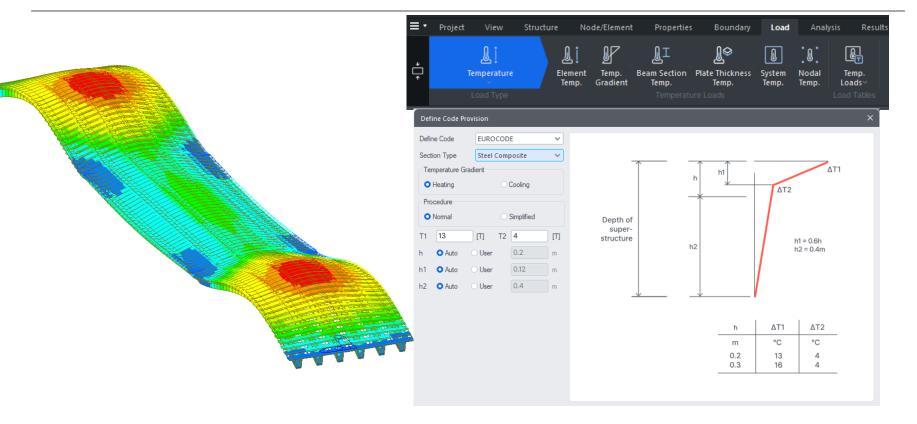

Add/Modify Time Dependent Material (Creep / Shrinkage)	×
Name C50 Code European	~
European	
Characteristic compressive cylinder strength of concrete at the age of 28 days (fck) 50000	kN/m²
Relative Humidity of ambient environment (40 - 99) 70 🗘	%
Notional size of member : 1	m
h = 2 * Ac / u (Ac : Section Area, u : Perimeter in contact with atmosphere)	
Type of cement	
⊖ Class S O Class N ⊖ Class R	
Type of code	
O EN 1992-1 (General Structure)	
O EN 1992-2 (Concrete Bridge) Use of silica-fume	
Age of concrete at the beginning of shrinkage	day
Show Result OK Cancel	Apply

Creep & Shrinkage input based on EN Code


Autogenerated creep & shrinkage curves

1.3 Loading (Moving Load)

Standard vehicles for EN Code


1.4 Loading (Response Spectrum)

Response spectrum input based on Eurocode

Generated RS curve

1.5 Loading (Temperature Gradient)

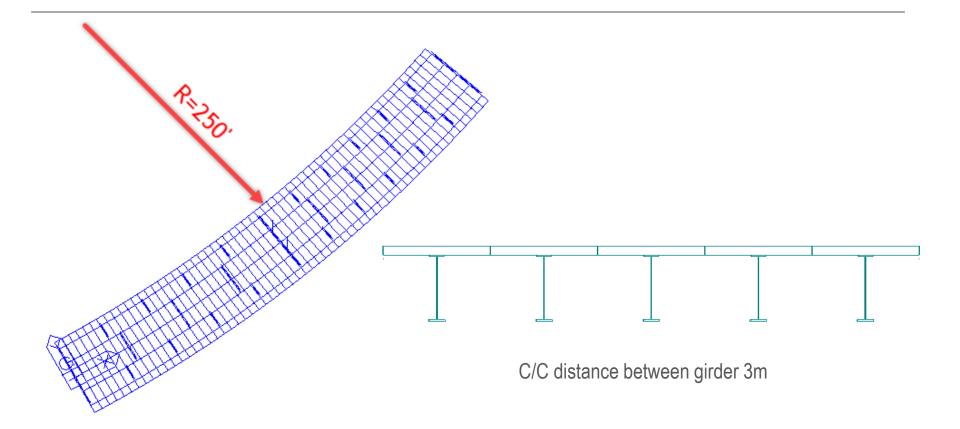
Temperature gradient input based on Eurocode

2. Specification of Bridge

• Bridge Type: 2-Span steel composite I girder curved bridge

span¹

Span 2


- Number of main girders: 5
- Curvature Radius: 250'

Material Properties

• Structural Steel: EN 05 (S), S355

• Concrete: EN 04 (RC), C50/60

2. Specification of Bridge

Jump into!!

CONTENTS

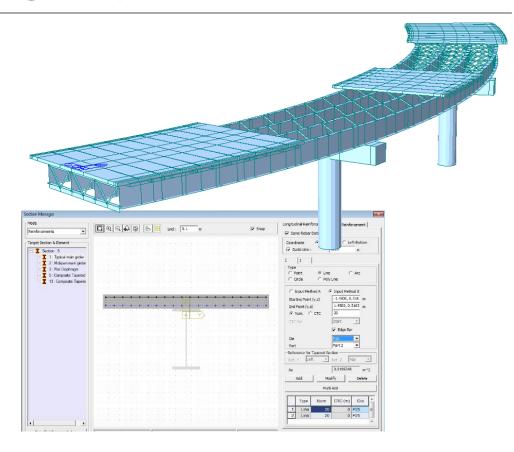
Introduction

- Steel Composite bridge
- Eurocode consideration in Midas Civi

Modelling

Load Application (Static, Moving, Dynamic, Thermal)

Analysis & Result


- Deformation
- Forces and Moment

Design & Dynamic Analysis of Pedestrian Bridge

3. Steel Composite Design as per EN 1994-2

Compo	site Steel Girder De	sign Code						×		
Code	EN 1994-2	~	NA	Recom	mendeo	i v	Update by Code			
Partial	Factor									
Concr	ete(Gamma_C)						1.5			
Reinfo	orcing Steel(Gamma_	S)					1.15			
Struct	ural Steel(Gamma_M	D)					1			
Struct	ural Steel(Gamma_M		1.1							
Shear	Resistance of a Hea		1.25							
Equiva	alent Constant Amplit	ude Stress R	lange(G	amma_P	F)		1			
Fatigu	e Strength(Gamma_M	Af)					1			
Fatigu	e Strength of Studs ir	n Shear(Gam	ma_Mf	,s)			1			
Stress	in Structural Steel(G	amma_M,ser)				1			
Damag	ge equivalence factor	s(for Resista	nce to	fatigue)						
Desig	n life of the bridge in y	/ear(t_Ld)					100			
Stress	Limitation									
k1	0.6	k2	0.45			k3	0.8			
Shear	Resistance Reductio	n Factor of S	Stud Co	nnector (for SLS)					
ks	0.75									
Ultimat	e Limit States				Service	eability Lim	it State			
🖂 Ber	nding Resistance					ss Limitaio				
🔽 Re:	sistance to Vertical Sl	near			🗸 Lon	gitudinal S	ihear (SLS)			
🔽 Re:	sistance to Lateral-tor	sional Buckli	ing			-				
🔽 Re:	sistance to Transvers	e force								
🔽 Re:	sistance to Longitudir	al Shear								
<table-cell> Re:</table-cell>	sistance to Fatigue									
					_					
						ОК	Cancel			

Dynamic Analysis of Pedestrian Bridge

Introduction

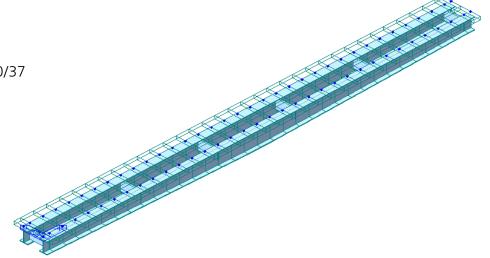
Introduction

 \rightarrow Pedestrian Bridge are more sensitive to dynamic load generated by moving pedestrian.

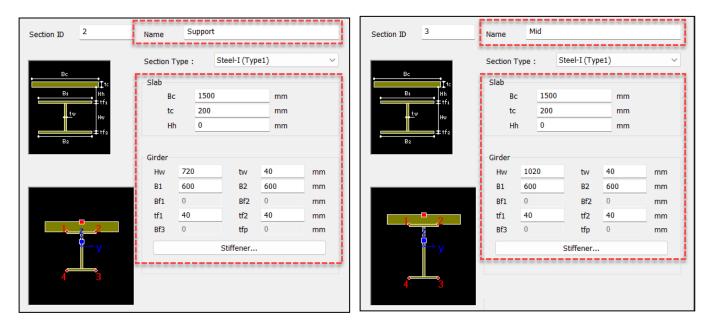
 \rightarrow Walking, running and jumping on footbridges produce dynamic forces which can activate appreciable vibration.

- \rightarrow Vibration can cause **discomfort** to pedestrians.
- \rightarrow Excess vibration can cause deterioration of the footbridge's structure integrity.

Bridge Layout


Modelling Data

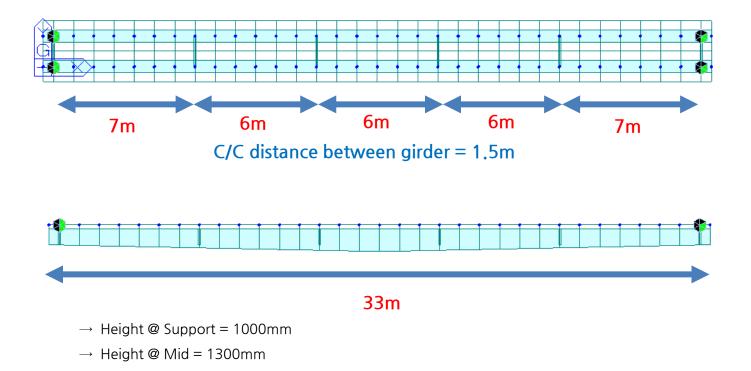
Geometric Details

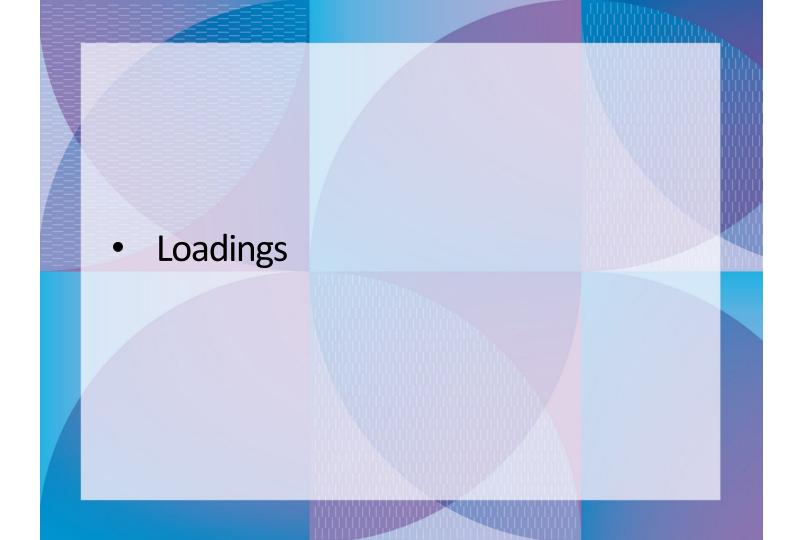

- ightarrow Bridge Type: Single Span Simply Supported Composite Steel I Girder Bridge
- \rightarrow Span length 33m with 2 main girder

Material Details

- \rightarrow Girder: S355
- \rightarrow Substructure: C30/37

Bridge Cross Section




Near Support

Near Mid Span

Note: All Dimensions are in mm unless mentioned otherwise

Bridge Geometry

Loading Details

Self Weight Parapet

→ Load on Each Girder = Area * Density of Concrete = (1 * 0.4) * 25= 10 kN/m

Services (50mm thk, density 22 kN/m3)

→ Load on Each Girder = Area * Density of Wearing Surface = $(0.05 \times 1.5) \times 22$ = 1.65 kN/m

Modelling Steps

Defining Material Properties

perties	Material
naterial Section Thickness	→ C30/37: EN04(RC)
ID Name Tγpe Standard DB 1 C30/37 Concrete EN04(RC) C30/37 2 S355 Steel EN05(S) S355	Add Modify Material Data General Material ID 2 Name \$355
	Elasticity Data Type of Design Steel Standard EN05(S) DB S355
	Type of Material Concrete Isotropic Orthotropic DB
	Steel Modulus of Elasticity : 2.1000e+02 ktl/mm²
	Poisson's Ratio 0.3 Thermal Coefficient 1.2000e-05 1/[C] Weight Density : 7.698e-08 ktV/mm³
	Use Mass Density: 7.85e-12 kN/mm³/g

Defining Section Properties

operties					
Material	Section Thickness				
ID	Name	Туре	Shape		Add
	Diaphragm	User	SB		Modify
	Support Mid	Comp Comp			Delete
	Sup Mid	Tapered			
	Mid Sup	Tapered			Сору
					Import
					Renumber
				د کر ملک	z ↓ y
				(Close

- \rightarrow **Diaphragm**: 800 x 100 mm
- \rightarrow Support Section
- \rightarrow Mid Section
- \rightarrow Tapered Section: Sup-Mid
- \rightarrow Tapered Section: Mid-Sup

Define Static Load Cases and Add Loads

me : Services		Add	Calf Mainht
se : All Load Ca	ie 🗸	Modify	→Self Weight
pe : Dead Load (f Wearing Surfaces and Utilities (DW) $$	Delete	ightarrow Parapet
scription :			
			\rightarrow Services
No Name	Туре	D	
1 Self Weight	Dead Load (D)		
2 Parapet	Dead Load of Component and Attachments (Do		
3 Services	Dead Load of Wearing Surfaces and Utilities (DW)	

Define Static Load Cases and Add Loads

me : Services		Add	Calf Mainht
se : All Load Ca	ie 🗸	Modify	→Self Weight
pe : Dead Load (f Wearing Surfaces and Utilities (DW) $$	Delete	ightarrow Parapet
scription :			
			\rightarrow Services
No Name	Туре	D	
1 Self Weight	Dead Load (D)		
2 Parapet	Dead Load of Component and Attachments (De		
3 Services	Dead Load of Wearing Surfaces and Utilities (DW)	

Workflow for Vibration Analysis of Pedestrian Bridges

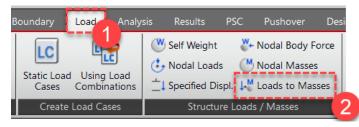
Perform Modal analysis to determine natural frequencies

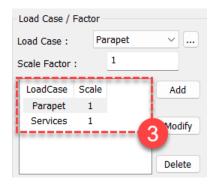
Determine pedestrian time forcing functions

Apply time forcing function along the length of the bridge while maintaining constant pedestrian velocity

Check for acceleration time response and determine peak acceleration

Code checks for peak acceleration limit




Vibration Control if necessary (Stiffening of the bridge; Dampers etc.)

Convert Self weight into Mass

	/iew Structure	₹ Node/Element	Properties	Boundary	Load	Analysis		
A	🔛 Base Structures	*	• ••		₩ RC Slab	-		
Structure Type	\land Cable Stayed Bri							
	2		•	Convert to X, Y,	Z	O Convert to X,	Y	O Convert to Z
								3

Convert Load to Mass

Eigen Value Analysis

Result > Vibration Mode Shape

Analysis > Eigen Valu	e Analysis	Node	Mode	UX	UY	UZ	RX	RY		RZ
					EIG	ÉNVALUE AN	ALYSIS			
igenvalue Analysis Control			Mode		uency	Period	Tolerance			
Type of Analysis		_	No	(rad/sec)	(cycle/sec)	(sec)				
Eigen Vectors	Ritz Vectors		1	10.221648			0.0000e+00			_
Subspace Iteration	-		2	13.425429			0.0000e+00			
Lanczos			3	29.150874			0.0000e+00			
Canczos		4	34.002950			0.0000e+00				
			5	49.059223	7.80801	0.128073	0.0000e+00			
			6	70.800871	11.26830	0.088744	0.0000e+00			
			7	71.885612	11.44095	0.087405	0.0000e+00			
			8	105.598438	16.80651	0.059501	6.5500e-117			
Eigen Vectors			9	113.449011	18.05597	0.055383	1.0776e-109			
[]	Sturm Sequence Check		10	126.403133	20.11768	0.049708	2.4380e-101			
Number of Frequencies : 15	Sturm Sequence Clieck		11	139.969591	22.27685	2 0.044890	1.1440e-90			
L			12	141.348723	22.49634	0.044452	2.2882e-89			
Frequency range of interest			13	144.081138	22.93122	0.043609	2.8125e-88			
Search From : 0 [cps]			14	146.110175	23.25415	0.043003	5.7318e-87			
To: 0 [cps]			15	157.344056	25.04208	0.039933	8.9576e-83			
					MODAL I	PARTICIPATION MAS	SES PRINTOUT			
Remove Eigenvalue Analysis Data	ок с		Mode	TRAN-X	TRAN-Y	TRAN-Z	ROTN-X	ROTN-Y	R	OTN-Z
			No	MASS(% SUM(%)	MASS(% SUM(%	MASS(% SUM(%)	MASS(% SUM(%)	MASS(% SU	M(%) MASS(% SUM(
			1	0.00 0.00	81.55 81.5	0.00 0.00	0.68 0.68	0.00	0.00 0.1	9 0.
			2	0.51 0.51	0.00 81.5	82.74 82.74	0.00 0.68	0.20	0.20 0.0	10 0.
			3	0.00 0.51	0.73 82.2	8 0.00 82.74	81.69 82.37	0.00	0.20 0.0	0 0
			4	0.00 0.51	0.00 82.2	3 0.00 82.74	0.00 82.37	0.00	0.20 59.3	6 59.
				n Made (Dortio	inction Vector	Anda I				

From A.2.4.3.2 of EN 1990, a verification of the comfort criteria should be performed if the fundamental frequency of the deck is less than:

 \rightarrow **5 Hz** for Vertical Vibration

ightarrow2.5 Hz for Horizontal (lateral) and torsional vibration

Eigen Value Analysis

Result > Vibration Mode Shape

(nalysis > Eigen Valu	ie Analysis	Node	Mode	UX	UY	UZ	RX	RY		R	Z
indigois / Eigen vale					EIG	ENVALUE AN	NALYSIS				
envalue Analysis Control			Mode	Fre	luency	Period	Tolerance				
Type of Analysis			No	(rad/sec)	(cycle/sec)	(sec)					
Eigen Vectors	Ritz Vectors		1	10.22164	1.626826	0.614694	0.0000e+00	1			
Subspace Iteration	O Ritz Vectors		2								
Subspace Relation			3								
Caliczos			4	34.00295							
			5								
			6								
			7								
			8				6.5500e-117				
Eigen Vectors			9								
	Sturm Sequence Check		10								
Number of Frequencies : 15			11	139.96959							
			12								
Frequency range of interest			13								
Secret from . [cpa]			14	146.11017							
To: 0 [cps]			15	157.34405							
	·					ARTICIPATION MAS					
Remove Eigenvalue Analysis Data	ок с		Mode	TRAN-X	TRAN-Y	TRAN-Z	ROTN-X	ROTN			TN-Z
			No		MASS(% SUM(%)						
			1	0.00 0.0					0.00		
	_		2			1			0.20		0.
			3						0.20		
			4	0.00 0.5	1 0.00 82.28		0.00 82.37	0.00	0.20	59.36	59

From A.2.4.3.2 of EN 1990, a verification of the comfort criteria should be performed if the fundamental frequency of the deck is less than:

 \rightarrow **5 Hz** for Vertical Vibration (2.136 Hz \langle 5 Hz)

 \rightarrow **2.5 Hz** for Horizontal (lateral) and torsional vibration (1.626 Hz < 2.5 Hz)

Time History AnalysisLoad > Seismic > Time History Analysis Load Case

Damping Ratio for All Modes

N.A 2.44 of BS EN1991-2, takes into account the following dynamic load cases for comfort criteria check

General						
Name : Walking Analysis Type O Linear Nonlinear		Description :				
		Analysis Method Modal Direct Integration Static		Time History Type		
End Time Step Nun	e : 40 nber Increment	sec	Time Incre 1	ement :	0.01	sec
Order in	Sequential Loa	ding	~			
Subse	quent to	O Load Case				
		🔵 Initial Eler	nent Forces(Ta	able)		
		Initial For	ces for Geomet	ric Stiffnes	ss	
Cumulate D/V/A Results			Keep Final Step Loads Constant			
Geometric	Nonlinearity T	уре				
O None			O Large Displacements			
Damping						
Dampin	g Method :	Modal				~
Direct Sp	pecification of M	Iodal Damping				
Damp	ing Ratio for Al	Modes :	0.04			

General Name : Jogging Description : Analysis Type Analysis Method Time History Type O Modal O Transient 🖸 Linear Direct Integration Nonlinear Periodic Static End Time : 40 ÷ sec Time Increment : 0.01 ÷ sec \$ Step Number Increment for Output Order in Sequential Loading Subsequent to Load Case Initial Element Forces(Table) Initial Forces for Geometric Stiffness Cumulate D/V/A Results Keep Final Step Loads Constant Geometric Nonlinearity Type O None O Large Displacements Damping Damping Method : Modal Direct Specification of Modal Damping -----

Walking Pedestrian

Jogging Pedestrian

0.04

Crowded Steady State

0.04

Description :

Time Increment :

÷

Keep Final Step Loads Constant

Analysis Method

Direct Integration

O Modal

Static

🔹 sec

Load Case

Modal

) Initial Element Forces(Table)

Initial Forces for Geometric Stiffness

Large Displacements

Time History Type

0.01 🗘 sec

Transient

O Periodic

Name : Crowded Condition

40

Step Number Increment for Output

Order in Sequential Loading

Cumulate D/V/A Results

Geometric Nonlinearity Type

Damping Method :

Direct Specification of Modal Damping

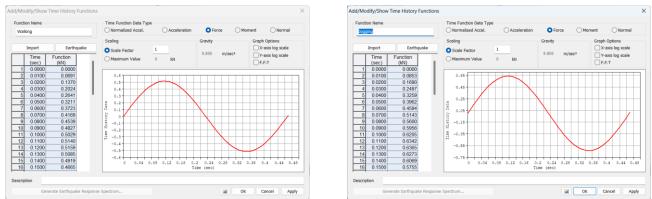
Damping Ratio for All Modes :

Analysis Type

Nonlinear

Subsequent to

O None


Damping

O Linear

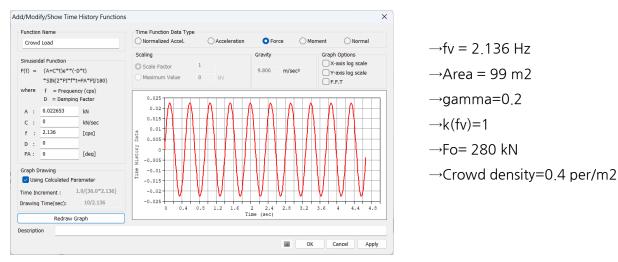
End Time :

 \rightarrow Damping ratio = 4% as per BC EN 1991-1-4

2. Add Time History Function Load > Seismic > Time History Function

Walking Pedestrian

Jogging Pedestrian


 \rightarrow Forcing function calculated as per NA 2.44.4 BS EN 1991-2

 \rightarrow fv = 2.136 Hz \rightarrow Gamma = 0.8 \rightarrow Walking, N=4 \rightarrow Jogging, N=1 \rightarrow Walking, k(fv)=1

 $F = F_0.k(f_v).\sqrt{1 + \gamma.(N-1)}.\sin(2\pi f_v.t)$

- \rightarrow Walking, k(fv)=1 \rightarrow Walking, Fo= 280 kN
- \rightarrow Jogging, k(fv)=0.7 \rightarrow Jogging, Fo= 910 kN

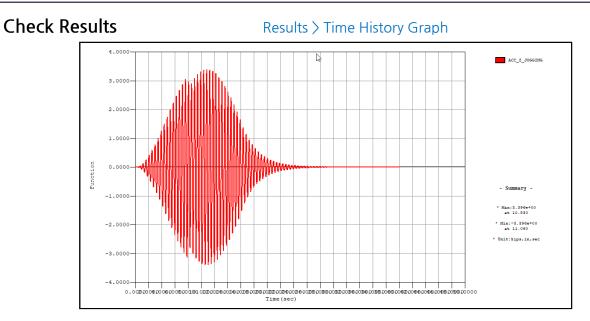
2. Add Time History Function Load > Seismic > Time History Function

Crowded Steady State

 \rightarrow Forcing function calculated as per NA 2.44.5 BS EN 1991-2

$$w = 1.8 \left(\frac{F_0}{A}\right) . k(f_v) . \sqrt{\gamma . N / \lambda} . \sin(2\pi . f_v . t)$$

2. Add Time History Function Load > Seismic > Dynamic Nodal loads


 \rightarrow Forcing function are applied along the length of bridge as dynamic load with a time gap = 0.615sec (fundamental period) to achieve worst case response due to resonance

 \rightarrow Dynamic Nodal loads should simulate constant velocity

 \rightarrow Velocity for walking and jogging are taken from Table NA.8

 \rightarrow Crowd condition dynamic nodal loads should be applied with zero interval time.

Time History Load Case Name Walking V							
Options Add Replace Delete							
Function and Direction							
Function Name :	Walking \checkmark						
Load Type :	Force						
Direction :	⊖x ⊖y Oz						
Arrival Time :	0 sec						
Scale Factor :	1						
Apply	Close						

 \rightarrow As per NA 2.44.6, Peak acceleration limit is given by

 \rightarrow From Table NA.9, K1=1.3

- \rightarrow From Table NA.10, K2=0.7
- →From Table NA.11, K3=1

$$\alpha_{limit} = 1.0 \, k_1 k_2 k_3 k_4 \, m/s^2$$

and 0.5m/s² $\leq \alpha_{limit} \leq$ 2m/s2

Thank you!

For Technical Queries, kindly contact our Global Technical Support:

https://globalsupport.midasuser.com/