Contents

- Step 1: Material & Section Properties Input
- Step 2: Create Model
- Step 3: Boundary Conditions Input
- Step 4: Loading Data Input
- Step 5: Analysis
- •Step 6: Design Input
- Step 7: Design Output

Seismic Design for Reinforced Concrete Building

Overview

This example problem is meant to demonstrate the design of a Reinforced Concrete building structure subjected to floor loads, wind loads and seismic loads.

Seismic Design Data

- Dual system (special reinforced concrete structural walls with special moment frame) in the transverse direction
- Special moment frame in the longitudinal direction
- Assigned to a seismic zone III

Methodology

- Static and Response spectrum analysis

Program Version	Gen 2024 (v2.1)
Revision Date	Feb. 14, 2025

Figure 1: RC Building Model

Figure 2: Typical Floor Plan

Step

00

Figure 3: Longitudinal Section

Applied Code

EN(RC)

Materials

Concrete C30/37

Building Structure Elements

Section ID	Dimension	Description
1	600x600mm	Edge columns
2	750x750mm	Interior Columns
3	500x600mm	Beam
4	450mm thick	Walls

Applied Load

Load	Description	Intensity
Dead Load	Self Weight	
Typical Floor Load	Dead Load Live load	8 kN/m2 2 kN/m2
Roof Load	Dead Load Live load	7 kN/m2 1.5 kN/m2
Wind Load	X, Y direction	EN-1(2005)
Earthquake Loads	X, Y direction	EN-8(2004)

1-1.Initialization of workspace

- Set UCS to X-Y Plane>> Origin 0,0,4
- 2 Click on Apply And OK

X-Z Plane	VCS by UCS Y-Z Plane	Named UCS	
	_		
	m YA y	11TS	
	Or	igin oz	
+	[deg] z GCS	X	
ate UCS Plane	Change	View Direction	
	X-Z Plane	Named Plane UCS by UCS X-Z Plane Y-Z Plane m Y g 0r z GCS	

Procedure	Properties ×	Material Data X
Defining Material Properties	Material Section Thickness ID Name Type Standard DB Add	General Material ID 1 Name C30/37
Menu>>Properties>Material	1 C30 Concr EN(RC) C30 Modify Delete Copy	Elasticity Data Type of Design Concrete Standard DB Product V
Add	Import Renumber	Concrete Standard EN(RC)
2 Material Data: Material id: 1		Type of Material Code Isotropic Orthotropic DB C30/37
Name: ConcM30		Steel Modulus of Elasticity : 0.0000e+00 kN/m ²
3 Type of Design: Concrete		Poisson's Ratio : 0 Thermal Coefficient : 0.0000e+00 1/[F] Weight Density : 0 kW/m3
Standard: EN(RC)	Close	Use Mass Density: 0 kN/m³/g
DB. C30/37		Modulus of Elasticity : 3.1938e+07 kN/m² Poisson's Ratio : 0.2
Click OK		Thermal Coefficient 5.5556e-06 1/[F] Weight Density : 23.54 kli/m³
		Use Mass Density: 2.4 kN/m³/g
		Plasticity Data Plastic Material Name NONE
		Inelastic Material Properties for Fiber Model & Non-dissipative element
		Concrete None Rebar None Image: mail of the state of the
		Thermal Transfer
		Specific Heat : 0 Btu/kN-[F]
		Heat Conduction : 0 Btu/m·hr·[F]
		Damping Ratio : 0.05
		on concer Apply

Generate the Beams

Menu>Model>Elements>Create Element

Select material as C30/C37 and section as Beam

2) Make sure that Intersect at nodes and Elements is on. To create a beam,

click on Nodal connectivity tab and select the origin as the first point and the Node 8 as the last point.

The beams between these two points are formed breaking at each node Similarly mark the other beams. Click [Close]

3-1. Generation of Floor layout (2)

Modify the Property of Columns: (To Change the property of certain exterior columns to Interior)

- Works> Edge columns> Active.
 Select the columns whose property has to be changed.
- Views>Display options> Property Name
- Now from the Works Menu, Drag and Drop Interior Column

3-1. Generation of Floor layout (4)

Procedure

Generation Shear Walls

- Location where we need to create the shear wall.
- 2 Main Menu >Node/Elements > >Create Elements
- Select Element Type > Wall
- Select Nodal Connectivity

All the four nodes of the Shear

Columns if present, should be

Deleted.

	Tree Menu 📮 🗙
2	Node Element Bound Mass Load
	Start Number
	Node Number : 65
3	Element Number : 83
	-Element Type
	Wall
	Z A N4
	$X \xrightarrow{N_1} N_2$
	Sub Type: Membrane O Plate
	bab typer to memorane to mate
	Wall ID : Auto Inc. 🔽 1
	Material
	No. Name
	No. Thickness
	1 1: 0.4500 💌
	Orientation
	Beta Angle C Ref. Point C Ref. Vertor
4	Nodal Connectivity
U	Control Control Control
	x,y,z 💌 En
	Intersect: 🔽 Node 🔽 Elem
	Create Intersecting Nodes
	<u>A</u> pply <u>C</u> lose

4-1. Generation of Building Model.

Procedure

Building Generation

Menu>View>Select>Select All

- Menu> Structure>Building> Building Generation
 No of Copies: 11
 Distance (Global Z): 3.15m
 Click Add and Apply
- The building is generated as shown

	Tree Menu 🛛 📮	x
	Building Generation	
	Start Node Number : 65	Â
1	Start Element Number : 85	
)	Building Generation	
	Number of Copies : 11 🗧	
	Distance(Global Z): 3.15 m	
	Material Inc. : 0 🛨	
	Column Section Inc. : 0 📫	
	Beam Section Inc. : 0 📫	
	Brace Section Inc. : 0 🛨	
	Wall Thickness Inc. : 0 🗧	
	Operations	
	Add Modify Delete	Ξ
	Copy Dist.(m) Mat. Col.	
	11 3.15 0 0	
	4	
	Building Generation Table	
	Copy Node Attributes	
	Copy Element Attributes	
	Merging Tolerance	
	Apply Close	Ŧ

Menu> Structure > Building > Story

Click [Auto Generate Story Data] button. This will create the data needed to generate diaphragms for each floor

2 Click [OK]

3 Click [Close]

0	m				
	Module Name	Story Name	Level(m)	Height(m)	Floor Diaphragm
۲	Base	Roof	38.65	0.00	Consider
	Base	12F	35.50	3.15	Consider
	Base	11F	32.35	3.15	Consider
	Base	10F	29.20	3.15	Consider
	Base	9F	26.05	3.15	Consider
	Base	8F	22.90	3.15	Consider
	Base	7F	19.75	3.15	Consider
	Base	6F	16.60	3.15	Consider
	Base	5F	13.45	3.15	Consider
	Base	4F	10.30	3.15	Consider
	Base	3F	7.15	3.15	Consider
	Base	2F	4.00	3.15	Consider
	Base	1F	0.00	4.00	Do not consider

No	Level		No	Name	Level	Height
			1	1F	0	4
			2	2F	4	3.15
			3	3F	7.15	3.15
			4	4F	10.3	3.15
			5	SF	13.45	3.15
		0	6	6F	16.6	3.15
		<-	7	7F	19.75	3.15
			8	8F	22.9	3.15
			9	9F	26.05	3.15
			10	10F	29.2	3.15
			11	11F	32.35	3.15
			12	12F	35.5	3.15
Includ	le Seismic Accid	ental Ecce	ntricity		5 % of	Plan Dimension

6-1. Boundary Conditions

- The lower ends of the Columns are assumed fixed
- Select the ends of all the columns from the elevation view.
- 2 Menu>Model>Boundaries> Supports
- Select the property of Fixed Support i.e. D- all, R- all.
- Click on Apply

Menu>Load>>Static Load Cases

Add the loads and their details

2 Click : [Close]

Static	Load Cas	ses			×
Na Ty De	me : pe : scription :	DL Dead Load (DEAD LOAD	D)	Add Modify Delete	
	No	Name	Туре	Description	
	1 2 3 4 5 6 7 8	DL LL WX WY EXP EXN EYP EYN	Dead Load (D) Live Load (L) Wind Load on Structure (W) Wind Load on Structure (W) Earthquake (E) Earthquake (E) Earthquake (E) Earthquake (E)	DEAD LOAD LIVE LOAD Wind load in X-direction Wind load in Y-direction Earthquake load in X-direction(-ve Earthquake load in X-direction(-ve Earthquake load in Y-direction(-ve	
•			III	2 Close	×

7-1. Loading Data (2)

Procedure

- Menu> Load>>Self Weight
- 2 Load Case Name: DL Z=-1

3 Add

In the Work Tree menu, Self
 Weight will be displayed

	Tree Menu 🛛 🗘 🛪
	Node Element Bound Mass Load
1	Self Weight
	Load Case Name Self weight Default Self Weight Factor
	x 0 y 0 z 0
2	Load Case X Y Z Group Self weight 0 0 -1 Default
	<u>Add</u> <u>Modify</u> <u>Delete</u>

7-1. Loading Data (3)

Procedure

Menu>Load>>Define Floor Load Type

Name: Typical Floor
 DL: -8kN/m2
 LL: -2kN/m2
 Similarly define the Roof Load
 DL: -7kN/m2
 LL: -1.5kN/m2

When you click on Add, The Load appears in the dialog Box

D	escription :		pical nool				
Floo	or Load & Load	Case	Floor Load				
1.	DL	~	-8		kN/m^2	Sub Beam	n Weight
2.	LL	~	-2		kN/m^2	Sub Beam	Weight
3.	NONE	~	0		kN/m^2 kN/m^2	Sub Beam Weig	
4.	NONE	~				Sub Beam Weight Sub Beam Weight Sub Beam Weight Sub Beam Weight	n Weight
5.	NONE	V	0		kN/m^2		n Weight
6.		\sim	0		kN/m^2 kN/m^2		
7.	NONE	ONE 🗸	0				
8.	NONE	\sim	0		kN/m^2	Sub Bean	am Weight
	Defi	ne Loa	ad Case				
	Name		ļ	Desc	ription		Add
•	Typical floor			_			Modify
*	Roonever						Delete

7-1. Loading Data (4)

Procedure

Menu>Load>Assign Floor Load

1 Name: Typical Floor

2 Copy Floor load: <u>10@3.15</u>

(Total 10 floors and each floor di stance is 3.15m)

To select the floor area, first Select Nodes Defining Loading Area wherein You need to Select the nodes . On the last Click, the load is applied.

Similarly assign the Roof Load But be careful to unselect the Copy Floor load option.

	Tree Menu	д
	Node Element Bound Mass	Loa
	Assign Floor Loads 🔹	
	Load Group Name	
	Default 💌	
1	Floor Load Type	
(Load Type: Typical Floor 💌 .	
	Distribution: Two way	-
	Load Angle(A1): 0 🔽 [deg]
	Exclude Inner Elem. of Area	
	Allow Polygon Type Unit Area	_
	Nth Sub-beam 3rd	
		*
	No. of Sub Beams	-
	Sub-Beam Angle(A2): 90	-
	Unit Self Weight: 0 kN/m	
	Load Direction & Projection	
	Load Direction : Global Z	-
	Projection : O Yes 📀 No)
	Description:	
	Nodes Defining Loading Area:	
2	Copy Floor Load	
	Axis: Ox Oy • z	
	Distances: 10@3.15 m	
	(Example : 5, 3, 4.5, 3@5.0)	
	Apply Convert to Beam Load Type	

Menu>Structure > Structure type

Structure type: 3-D
 Mass Control Parameter:
 Lumped Mass
 Convert Self-Weight into
 masses
 Convert to X,Y
 Gravity Acceleration:
 9.806 m/sec2

Structure Type	×
Structure Type	,
Mass Control Parameter ① Umped Mass	
Consider Off-diagonal Masses	
Considering Rotational Rigid Body Mode for Modal Participation Factor	
C Consistent Mass	
Convert Self-weight into Masses	
C Convert to X, Y, Z C Convert to X, Y C Convert to Z	
Gravity Acceleration : 9.806 m/sec^2	
Initial Temperature : 0 [F]	
Align Top of Beam Section with Floor (X-Y Plane) for Panel Zone Effect / Display	
Align Top of Slab(Plate) Section with Floor (X-Y Plane) for Display	
OK Canc	el

Menu>Load > Masses> Loads to Masses

Mass Direction: X,Y Load Case / Factor: DL: 1 Click Add LL: 0.25 Click Add

On clicking Ok, Such a model is generated

Loads to Masses
Mass Direction C X C Y C Z • X, Y C Y, Z C X, Z C X, Y, Z C X, Z C X, Y, Z
Load Type for Converting V Nodal Load V Beam Load V Floor Load V Pressure (Hydrostatic)
Gravity : 9.806 m/sec^2
LoadCase Scale Add Self weight 1 live load 0.25 Modify Delete
Remove Load to Mass Data
OK Cancel

7-3. Wind Loads

Procedure

Menu>Load > Lateral Loads > Wind Loads > Click [Add]

 Load Case Name : WX Wind Load Code : EN-1(2005) Basic Wind Speed: 26m/s Terrain Category: II Building Height: 38.65m Wind Load Direction Factor for X: 1 rest all will Be 0. Click Apply

Similarly assign the Load parameters for WY

2 The loads are summarized in The dialog box

Load Case Name :	WX		×
Wind Load Code :	Eurocode-1(20	005)	 ✓ Import
National Annex :	Recommended	ł	~
Description :			
- Wind Load Para	meters		
Terrain Category		Π	~
Friction Coefficient	0		
Fund. Basic Wind V	elocity (Vb,o)	26	[m/s]
Directional Factor (Cdir)	1	
Seasonal Factor (C	season)	1	
Turbulence Factor	(KI)	1	
Building Height (h)	38.65	m	
External Pressure	Coefficients		
Automatic	User Defined		10.0
vvindward(A=10) vvindward(A=	-0.7	ard Coef.
		017	
Lack of Correlation Automatic	1 Factor	1	
	0		
Parame	eters for Mean Wind	Velocity (Vm)	•
Structural Factor (CsCd)	1	
Load Evaluation	on Using Force Coeff	icient	
Force Coefficient	(Cf)	1	
Wind Load Direction X-Dir. 1 Additional Wind Loa	n Factor (Scale Facto Y-Dir. 0 ds (Unit:kN,m)	or) Z-Rot.	0
Story Ad	dX AddY	AddR	Add

1

○x & y D	ir	0	Overturning	Moment		1	1F	
						1	OF	
Story Name	Elev.	Pressure	Loaded H	Loaded B			9F	
Roof	38.65	1.3854807	1.575	20.25			8F	
12F	35.5	1.3854807	3.15	20.25			75	
11F	32.35	1.3854807	3.15	20.25		No.		
10F	29.2	1.3854807	3.15	20.25		St	6F	
9F	26.05	1.3854807	3.15	20.25				
8F	22.9	1.3854807	3.15	20.25			51	
7F	19.75	1.3854807	3.15	20.25			4F	
6F	16.6	1.2603971	3.15	20.25				
5F	13.45	1.2603971	3.15	20.25			3F	
							2F	
File Name:	D:\MTECH	H STRUCTUR	L VIT\MIDAS	INTERNSHIP\j	jk\	G.	L.	0 10 20 30 40 50 60 70 80 90
	Make Wind Loa	ad Calc. Shee	t	Browse				Wind Force
								Close

7-4. Static Seismic Loads

(1

Procedure

Menu>Load >Lateral Load>Static Seismic Loads

Fill in the details as shown.

- Calculating time period , use period Calculator for Auto-calculation of periods from the code equations
- On defining all the load cases Such a dialog box appears.

	ne :	EXP			~	
Seismic Load C	ode:	Eurocode	8(2004)		 Import 	
National Annex	:	Recomme	ended		~	
Description :						
Seismic Load	Parameter	s				
Ground Typ	e:		В		\sim	
Spectrum	Parameters	5				
O Type1		○ Туре2	C	User De	fined	
Soil Fa	ctor(S)	Тb	Тс		Тd	
1.2		0.2	0.5	2		
Ref. Peak G	round Acc.	(AgR) :	0	.08	q	
Behavior Fa	actor (a) :		1	1.5		
Lower Boun	d Factor (h	n ·	: 0.2			
Importance	Eactor (I)	,,. \				
	al Period ·	1.31	8	1.318		
Fundamenta						
Fundamenta Seismic Load	Direction F	actor (Scale	Factor)			
Fundamenta Seismic Load X-Direction :	Direction F	actor (Scale	Factor) /-Directio	in:	0	
Fundamenta Seismic Load X-Direction : Accidental Eco	Direction F	factor (Scale	Factor) ′-Directic	ın :	0	
Fundamenta Seismic Load X-Direction : Accidental Ec X-Direction (I	Direction F 1 centricity Ex) :	actor (Scale	Factor) - Directio	n : gative	0 None	
Fundamenta Seismic Load X-Direction : Accidental Ec X-Direction (I Y-Direction (E	Direction F 1 centricity Ex):	actor (Scale	Factor) -Directio Ne Ne	gative	0 None None	
Fundamenta Seismic Load X-Direction : Accidental Ec X-Direction (I Y-Direction (I Torsional Am	Direction F 1 centricity Ex): (Ey): (plification I Eccentricit	Positive Positive	Factor) /-Directic Ne Ne	gative gative ent Eccer	0 None None ntricity	
Fundamenta Seismic Load X-Direction : Accidental Ec X-Direction (I Y-Direction (I Torsional Am Accidenta Additional Sei	Direction F 1 centricity Ex): (Ex): (plification I Eccentricit ismic Loads	Positive Positive S(Unit:kN,m)	Factor) /-Directio Ne Inher	gative gative ent Eccer	0 None None	
Fundamenta Seismic Load X-Direction : Accidental Ec X-Direction (I Y-Direction (I Torsional Am Accidenta Additional Sei	Direction F 1 centricity Ex): (Fy): (plification I Eccentricit ismic Loads AddX	Positive Positive Positive (Unit:kN,m) Add	Factor) /-Directic Ne Ne Inher	n : gative gative ent Eccer ddR	0 None None ntricity	
Fundamenta Seismic Load X-Direction : Accidental Eco X-Direction (I Y-Direction (I Torsional Am Accidenta Additional Sei	Direction F 1 centricity Ex): (Ey): (plification I Eccentricit ismic Loads	Positive Positive (Unit:kN,m)	Factor) /-Directic Ne Ne Inher	gative gative gative ent Eccer	0 None None	

Modifv

floor

1

2

Procedure \times Add/Modify Seismic Load Specification Seismic Load Profile \times Menu>Loads> Lateral Loads> EXP Load Case Name : \sim Select Profile Component Eurocode-8(2004) \sim Import Seismic Load Code : Static Seismic Loads 2 Roof OX-Dir Story Force National Annex : Recommended \sim 12F ()Y-Dir O Story Shear Description : 11F OX&YDir Overturning Moment 10F Seismic Load Parameters Select Load Case Name EXP> OSRSS в Ground Type : \sim Seismic Added Story Weight Elev. Nan Force Force Spectrum Parameters Roof 11809.488 38.65 1313.5961 0.0 torv O Type1 User Defined 35.5 O Type2 12F 13827.548 1412.7157 0.0 11F 13827.548 32.35 1287.3621 0.0 Seismic Load Profile Soil Factor(S) ть Тс Тd 10F 13827.548 29.2 1162.0084 0.0 51 13827.548 26.05 1036.6548 0.0 9F 2 1.2 0.2 0.5 41 13827.548 22.9 911.30114 0.0 8F 7F 13827.548 19.75 785.94749 0.0 Ref. Peak Ground Acc. (AgR) : 0.08 6F 13827.548 16.6 660.59384 0.0 X-Dir (on) q 27 13827.548 13.45 535.24019 0.0 1.5 G.L. Behavior Factor (g): Story Force (on) 200 400 600 800 1200 0 0.2 Lower Bound Factor (b) : Seismic Force File Name: D:\MTECH STRUCTURAL VIT\MIDAS INTERNSHIP\jk\ Conform Story Shear of Base 1 Importance Factor (I) \sim Browse Make Seismic Load Calc, Sheet Close Structural Parameters Seismic Load Profile X-Dir. Y-Dir. Select Profile Component 1.318 1.318 Fundamental Period : Roof O X-Dir Story Force 12F Seismic Load Direction Factor (Scale Factor) OY-Dir Story Shear OX&YDir Overturning Moment X-Direction : 1 Y-Direction : 0 10F OSRSS 91 Accidental Eccentricity Added Story Seismic Weight Elev 81 O Positive Negative None Force Force X-Direction (Ex) : Nam 13827.548 26.05 1036.6548 0.0 O Positive None Y-Direction (Ey) : Negative 13827.548 22.9 911.30114 0.0 6F 13827.548 19.75 785.94749 0.0 7F Torsional Amplification 6F 13827.548 16.6 660.59384 0.0 5 13827.548 13.45 535.24019 0.0 Accidental Eccentricity Inherent Eccentricity 4F 13827.548 10.3 409.88654 0.0 13827.548 7.15 284.53289 0.0 Additional Seismic Loads (Unit:kN,m) 0.0 Add.-X Add.-Y Add.-R Story Add G.L 0 2000 4000 6000 8000 10000 Story Shear D:\MTECH STRUCTURAL VIT\MIDAS INTERNSHIP\jk File Name: 1 Make Seismic Load Calc. Sheet Browse Close Seismic Load Profile.. OK Cancel Apply

Menu>Load>Dynamic loads> Response Spectrum functions

- Add > Function Name:
 Design Spectrum
- Generate Design Spectrum: Design Spectrum: EN-8(2004)
 Spectrum type : Horizontal
 Elastic spectrum
 Spectrum Parameters: type 1
 Importance Factor: 1
 Viscous Damping Ratio: 5
 Click OK

Such a Dialog Box appears. Click OK

The Response Spectrum .

Function is generated

http://en.midasuser.com

8

Midas Information Technology Co., Ltd.

7-6. Response Spectrum Load cases

1

	Procedure
Me	nu>Load>Response Spectrum
An	alysis Data > Response
Sp	ectrum Load Cases
1	Load Cases Name : RX
	Excitation Angle : 0
2	Check : EURO 2004
3	Click [Add]
	Lood Cooco Nama - DV
4	Load Cases Name . R f
	Excitation Angle : 90
	> Click [Add]
	The two Spectrum Lood Coose
U	
	Are created
	Click [Clocc]

ree Menu	—⊢ ⊽ ×
Response Spectrum Load Cas	es
Spectrum Load Case	I
Load Case Name:	RX
Direction :	х-ү ~
Auto-Search Angle	
O Major	Ortho
Excitation Angle :	0 • [deg]
Scale Factor :	1
Period Modification Factor :	
	1
Modal Combination Control	
Spectrum Functions	
Function Name (Damping I	Ratio)
URO2004 H-ELASTIC	(0.05)
Apply Damping Method	
Damping Me	thod
Correction by Damping	Ratio
Interpolation of Spectral Da	ita
🔾 Linear 💽	Logarithm
Accidental Eccentricity	
Non-Dissipative	q_ND: 1.2
Description :	
LoadCase Direction Sca	ale
RY X-Y 1	
Operations	
Add Modify	Copy Delete
Eigenvalue Analysis	s Control
Response Spectrum	Functions
	Close

http://en.midasuser.com

Menu>Analysis> Eigen value Analysis Control

1 Fill in the details as shown.

ipe of Analysis				
 Eigen Vectors 			Ritz Vectors	
🔾 Subspace Iteratio	n			
Clanczos				
igen Vectors				
igen Vectors	10		Eigenvalue Control Parameters	5
igen Vectors Number of Frequencies :	10		Eigenvalue Control Parameters Number of Iterations :	20
igen Vectors Number of Frequencies : - Frequency range of ir	10 nterest	Ţ	Eigenvalue Control Parameters Number of Iterations : Subspace Dimension :	20 • 0 •
igen Vectors Number of Frequencies : Frequency range of ir Search From :	10 nterest 0	↓ ↓ [cps]	Eigenvalue Control Parameters Number of Iterations : Subspace Dimension : Convergence Tolerance :	20 🔹 0 🔹 1e-10

0 Menu>Analysis>Perform Analysis

Menu>Results > Result Tables > 2 Story >Reaction>

Select EXP, EYP and RX and RY

Calculate the ratio of 3 EXP/RX(RS) and EYP/RY(RS)

				▶ ₩	1 🔁 🔒			
			P	erform Analys	sis (F5)			
Noc	le	Load	FX (kN)	FY (kN)	FZ (kN)	MX (kN⋅m)	MY (kN⋅m)	MZ (kN⋅m)
	38	RY(RS)	0.371274	28.833733	693.109049	105.222369	1.169539	0.083282
	39	RY(RS)	0.524953	31.971417	925.137022	109.051939	1.423524	0.083282
	40	RY(RS)	0.666254	28.114865	646.660941	103.712627	1.574554	0.083282
	41	RY(RS)	3.021708	38.546040	181.592762	119.274375	3.673013	0.083282
	42	RY(RS)	0.413654	3317.757068	16124.256312	281.663925	1.368826	0.203324
	43	RY(RS)	3.512143	65.473310	263.793424	251.034233	5.114434	0.203324
	44	RY(RS)	0.284681	72.219837	420.527225	258.932339	1.190538	0.203324
	45	RY(RS)	0.358108	72.024435	428.744161	257.973046	1.301269	0.203324
	46	RY(RS)	2.916076	71.733081	577.717770	256.879645	3.244729	0.203324
	47	RY(RS)	0.390363	3275.879575	15732.484201	276.661473	1.340449	0.203324
	48	RY(RS)	3.152059	37.585936	179.236722	115.996056	4.319796	0.083282
	49	RY(RS)	3.145967	38.546039	181.524765	119.274374	4.042065	0.083282
	50	RY(RS)	0.043193	3317.755780	16124.239394	281.663926	0.178467	0.203324
1	51	RY(RS)	3.212293	65.473302	263.800153	251.034223	4.111307	0.203324
	52	RY(RS)	0.182756	72.218631	420.671994	258.930765	0.250345	0.203324
1	53	RY(RS)	0.056090	72.024880	428.654807	257.973632	0.166975	0.203324
	54	RY(RS)	3.186602	71.740214	576.770082	256.889036	3.999017	0.203324
1	55	RY(RS)	0.040305	3276.041824	15734.726281	276.660224	0.170795	0.203324
	56	RY(RS)	3.024775	37.594891	178.080282	116.007906	3.918599	0.083282
	57	RY(RS)	0.242077	28.740572	655.087553	106.559933	0.507191	0.083282
	58	RY(RS)	0.196524	32.581505	970.832556	111.295683	0.705443	0.083282
	59	RY(RS)	0.375881	29.096085	688.539594	106.427895	0.920062	0.083282
	60	RY(RS)	0.209004	28.879255	665.107621	105.856339	0.723250	0.083282
	61	RY(RS)	0.203005	28.789219	662.347312	105.449137	0.714912	0.083282
	62	RY(RS)	0.195936	28.813889	685.214511	105.196428	0.600881	0.083282
	63	RY(RS)	0.223002	32.017436	942.781853	109.111766	0.741744	0.083282
	64	RY(RS)	0.371626	28.092614	635.484444	103.683654	0.897339	0.083282
			SUMN	IATION OF REA	ACTION FORCE	S PRINTOUT		
		Load	FX (kN)	FY (kN)	FZ (kN)			
		EXP	-9961.324351	0.000000	0.000000			
		EYP	0.00000	-9961.324351	0.00000			
		RX(RS)	8390.035829	4.598289	0.00000			
	_	RY(RS)	4 598289	14369 086811	0.00000			

EXP/RX(RS) =2.13

1

EYP/RY(RS) =1.38

9-1. Automatic generation of load combinations

Procedure

Menu>Results > Combinations > Concrete Design

- Select Concrete Design tab
- Auto Generation
 Scale Up Factor: RX 1.500
 Scale Up Factor: RY 1.00
- Select Design Code as "Eurocode 2:04"
 - > Click [OK]
 - > Click [Close]

Uprion			
Add OR	eplace		
Code Selection			
O Steel	Concrete	OSRC	
O Cold Formed St	eel	O Footing	i
Aluminum			
Design Code :	Eurocode	2:04	~
National Annex :	Recomme	ended	~
Scale Up of Res	ponse Spectr	um Load Cases	-
Scale Up Factor :	1	RX	~
Factor Load C	Case		Add
1.000 RY		P	lodify
			Delete
CS : Construction	Stage Load C	ase / ()st+cs
CS : Construction ST Only Consider Orthog Set Load 100 : 30 : 30 F SRSS(Square-	Stage Load C CS Only gonal Effect I Cases for Or Rule Root-of-Sum-	ase / (thogonal Effec) ST+CS
CS : Construction ST Only Consider Orthog Set Load 100 : 30 : 30 F SRSS(Square- Define Factors for V	Stage Load C CS Only gonal Effect I Cases for Or Rule Root-of-Sum- /ariable Action	ase thogonal Effec of-Squares) ns	ST+CS
CS : Construction ST Only Consider Orthog Set Load 100 : 30 : 30 f SRSS(Square- Define Factors for V Fac	Stage Load C CS Only gonal Effect I Cases for Or Rule Root-of-Sum- /ariable Action tors for Varia	ase thogonal Effect of-Squares) ns ble Actions)sT+CS
CS : Construction ST Only Consider Orthog Set Load 100 : 30 : 30 f SRSS(Square- Define Factors for V Fac	Stage Load C CS Only gonal Effect I Cases for Or Rule Root-of-Sum- /ariable Action tors for Varia	ase thogonal Effec of-Squares) ns ble Actions) ST+CS t
CS : Construction ST Only Consider Orthog Set Load 100 : 30 : 30 f SRSS(Square- Define Factors for V Fac Partial factors for a Gamma_G : 1	Stage Load C CS Only gonal Effect d Cases for Or Rule Root-of-Sum- /ariable Action tors for Varia ctions .35	ase thogonal Effec of-Squares) ns ble Actions Gamma_Q :) ST+CS t 1.5
CS : Construction ST Only Consider Orthog Set Load 100 : 30 : 30 F SRSS(Square- Define Factors for V Fac Partial factors for a Gamma_G : 1 Will Execute Cons	Stage Load C CS Only gonal Effect d Cases for Or Rule Root-of-Sum- /ariable Action tors for Varia ctions .35 C truction Stage	ase / thogonal Effec of-Squares) ns ble Actions iamma_Q : e Analysis	ST+CS t 1.5
CS : Construction ST Only Consider Orthog Set Load 100 : 30 : 30 f SRSS(Square- Define Factors for V Fac Partial factors for a Gamma_G : <u>1</u> Will Execute Cons	Stage Load C CS Only gonal Effect d Cases for Or Rule Root-of-Sum- /ariable Action tors for Varia ctions .35 c truction Stage s for Prestress	ase / thogonal Effec of-Squares) ns ble Actions amma_Q : a Analysis s Load Cases	ST+CS t 1.5
CS : Construction ST Only Consider Orthog Set Load 100 : 30 : 30 f SRSS(Square- Define Factors for V Fact Partial factors for a Gamma_G : 1 Will Execute Consider Losses Transfer Stage	Stage Load C CS Only gonal Effect d Cases for Or Rule Root-of-Sum- Variable Action tors for Varia ctions .35 C truction Stage s for Prestress : 1	ase / thogonal Effec of-Squares) ns ble Actions iamma_Q : a Analysis s Load Cases	ST+CS t 1.5 Define
CS : Construction ST Only Consider Orthog Set Load On : 30 : 30 f SRSS(Square- Define Factors for N Fact Partial factors for a Gamma_G : 1 Will Execute Cons Consider Losser Transfer Stage Service Load Stage	Stage Load C CS Only gonal Effect (Cases for Or Rule Root-of-Sum- /ariable Action tors for Varia ctions .35 C truction Stage s for Prestress : 1 1 : 1	ase / thogonal Effec of-Squares) ns ble Actions iamma_Q : a Analysis s Load Cases	ST+CS t 1.5 Define Factors
CS : Construction ST Only Consider Orthog Set Load 100 : 30 : 30 f SRSS(Square- Define Factors for A Fact Partial factors for a Gamma_G : 1 Will Execute Cons Consider Losses Transfer Stage Service Load Stage	Stage Load C CS Only gonal Effect d Cases for Or Rule Root-of-Sum- /ariable Action tors for Varia ctions .35 C truction Stage s for Prestress : 1 : 1 ection Load	ase / thogonal Effec of-Squares) ns ble Actions iamma_Q : a Analysis s Load Cases	ST+CS t 1.5 Define Factors

ad	Comb	ination Lis	:				Load	Cases and Fa	ctors		
1	No	Name	Active	Туре	Description				LoadCase	Factor	
.]	1	cLCB1	Streng	Add	1.35D + 1.5(1.0LL)		+	DL(ST)		1.3500	
	2	cLCB2	Streng	Add	1.35D + 1.5(1.0LL)			LL(ST)		1.5000	
	3	cLCB3	Streng	Add	1.35D + 1.5(1.0LL)		*				
	4	cLCB4	Streng	Add	1.35D + 1.5(0.7LL)						
	5	cLCB5	Streng	Add	1.35D + 1.5(0.7LL)						
	6	cLCB6	Streng	Add	1.35D + 1.5(1.0LL)						
	7	cLCB7	Streng	Add	1.35D + 1.5(1.0LL)						
	8	cLCB8	Streng	Add	1.35D + 1.5(0.7LL)						
	9	cLCB9	Streng	Add	1.35D + 1.5(0.7LL)						
	10	cLCB1	Streng	Add	1.0D + 1.0(0.3L) +						
	11	cLCB1	Streng	Add	1.0D + 1.0(0.3L) +						
	12	cLCB1	Streng	Add	1.0D + 1.0(0.3L) +						
	13	cLCB1	Streng	Add	1.0D + 1.0(0.3L) +						
	14	cLCB1	Streng	Add	1.0D + 1.0(0.3L) -						
	15	cLCB1	Streng	Add	1.0D + 1.0(0.3L) -						
	16	cLCB1	Streng	Add	1.0D + 1.0(0.3L) -						
	17	cLCB1	Streng	Add	1.0D + 1.0(0.3L) -						
	18	cLCB1	Streng	Add	1.0D + 1.0(0.3L) +						
	19	cLCB1	Streng	Add	1.0D + 1.0(0.3L) +						
	20	cLCB2	Streng	Add	1.0D + 1.0(0.3L) -						
	21	cLCB2	Streng	Add	1.0D + 1.0(0.3L) -						
ļ	22	cl CB2	Servic	hhA	SFRV 1 0D + (1 0	2					

Procedure

Menu>Design > General Design Parameter >Definition of Frame

- X-direction > Unbraced
 Sway (on)
 - Y-direction > Braced Non-Sway (on)

Design Type > 3-D

Click OK [Close]

Design > Concrete Design Parameter > Design Code Design Code > EN 2 :2004

Definition of Frame	
X-Direction of Frame	 Unbraced Sway Braced Non-sway
Y-Direction of Frame	 Unbraced Sway Braced Non-sway
Design Type	
O 3-D	○X-Z Plane
V-7 Plane	X-Y Plane

10-2. Design (2)

1

Menu>Design > RC Design >Design Criteria for Rebar

- Fill in the details as per Requirements for every Structural element
- Click on Input Additional Wall Data
- Select any End Rebar Design Method

For Beam Design —				
Main Rebar	:	P20		Rebar.
Stirrups	:	P10 ~	Arrangement	t: 2
Side Bar	:	P12 ~		
dT : 0		m	dB : 0	m
		Consider Spa	acing Limit for Main Re	ebar
		Spliced Bars :	None 50	0% ()100
For Column Design				
Main Rebar	:	P20		Rebar.
Ties/Spirals	:	P10 ~	Arrangement	: Y: 2
c	do :	0	m	Z: 2
		Consider Spi Spliced Bars :	acing Limit for Main Ra	ebar 0% ()100
For Brace Design —				
Main Rebar	:	P20		Rebar.
Ties/Spirals	:	P10 ~	Arrangement	: Y: 2
c	do :	0	m	Z: 2
		Consider Spa	cing Limit for Main R	ebar
		Spliced Bars :	O None 050	0% (100
For Shear Wall Desig	gn —			
Vertical Rebar	:	P12		Rebar.
Horizontal Rebar	:	P10 ~	End Rebar From	: P10
Boundary Element Re	ebar		P10 ~	
Boundary Element Re	ebar S	ace :	0.2 m	
			du : 0	

Procedure

Menu>Design > RC Design>Modify Concrete Materials

Select material ID #1
 Rebar Selection
 Code > EN(RC)
 Grade of Main Rebar > S400
 Grade of Sub-Rebar > S400
 Click Modify

D	Name	fc fck R	Chk	Lamb	Main-bar	5	Sub-bar	_
1	C30/37	30000	Х	1	S400		S400	
oncre	and the second of the	alaction						
	ete Material S	election						
odo		election			C d		C20/27	
ode	: EN(RC)	election	~		Grade	:	C30/37	×
ode pecifi	ER (RC) ed Compressi	ve Strength (<pre>✓</pre> (fc fck)		Grade	:	C30/37 30000	✓ kN/m²
Code pecifi	EE Material S EN(RC) ed Compressi	ve Strength ((fc fck)		Grade	:	C30/37 30000	✓ kN/m ²
Code pecifi] Ligł	EN(RC) EN(RC) ed Compressi Weight Con	ve Strength (crete Factor	✓ (fc fck) (Lambda)) :	Grade	:	C30/37 30000 1	KN/m ²
Code pecifi Ligh	EE Material Si EN(RC) ed Compressi at Weight Con Selection	ve Strength (crete Factor	✓ (fc fck) (Lambda)) :	Grade	:	C30/37 30000 1	kN/m ²
Code pecifi Ligh Rebar	EE Material Si EN(RC) ed Compressi at Weight Con Selection	ve Strength (crete Factor	(fc fck) (Lambda)) :	Grade	:	C30/37 30000 1	kN/m ²
code pecifi Ligh cebar code	EE Material Si EN(RC) ed Compressi at Weight Con Selection : EN(RC)	ve Strength (crete Factor	✓ (fc fck) (Lambda))	Grade	:	C30/37 30000 1	kN/m ²
code pecifi Ligh cebar code rade	ELE Material Si EN(RC) ed Compressi at Weight Con Selection : EN(RC) of Main Rebar	ve Strength (crete Factor	✓ (fc fck) (Lambda) ✓)	Grade	:	C30/37 30000 1 400000	kN/m²

10-3. Design Output (Beam)

Fuer and 2:04 DC Basers Design

Procedure

Menu>Design > RC Design > Concrete code design> Beam Design

• Sorted by > Member (on)

Similarly Design The column And Shear wall.

MEMB		Sec	tion	fck			
SECT	SEL	Bc	Hc	fyk	POS		
Span	1	bf	hf	fyw			
1		Be	am	30000.0)	OK	
3		0.6000	0.5000	400000	M (OK	
8.0000	1	0.0000	0.0000	400000) J	OK	
2		Be	am	30000.0)	OK	
3		0.6000	0.5000	400000	M (OK	
8.0000		0.0000	0.0000	400000) J	OK	
3		Be	am	30000.0)	OK	
3		0.6000	0.5000	400000	M (OK	
8.0000	1	0.0000	0.0000	400000) J	OK	
4		edge c	olumns	30000.0)	OK	
1		0.6000	0.6000	400000) M	OK	
8.0000		0.0000	0.0000	400000) J	OK	
5		edge c	olumns	30000.0)	OK	
1		0.6000	0.6000	400000	M (OK	
8.0000	1	0.0000	0.0000	400000) J	OK	
6		edge c	olumns	30000.0)	OK	
1		0.6000	0.6000	400000	M (OK	
8.0000	1	0.0000	0.0000	400000) J	OK	
7		edge c	olumns	30000.0)	OK	
1		0.6000	0.6000	400000	M (OK	
Connec	t Model	View	Incoloct		Porca	Iculatio	
Sciet	50 7 th	- ·	mocreet /		NC CO	culuti	1
Grap	hic		Detail		Summar	у	
Ontion fo	r Detail	Print Po	sition		Und	ate Re	b
		Mid		,			Ĩ
<u>ena</u> 1.	\cup	MIG.	C End .			Close	

Preview Window			—	\times
No:2 SePrint B	Print All 😴 Close	R Save		
1. Design Information				
Member Number 2				
Design Code Eurocode2:04		Unit System	kN, m	
Material Data fok = 30000, fyk = 4000	000, fyw = 400000 KPa			
Section Property Beam (No : 3)		Beam Span	8m	
ENO-0	M	21	END-J	
+ #+	+ 5+		- 8+	
8+ ******	84	•••	8+ •••••• •	
8	8	9.0		
⊥ §t ••••••	⊥ 津 💶	•••	_ \$ t •••••• •	
8.0	L 0	•	0.0	
TOP 18-P20	TOP	5-P20	TOP 18-P20	
BOT 8-P20 STIRRUPS 2-P10 @90	BOT	6-P20 UPS 2-P10 @110	BOT 8-P20 STIRRUPS 2-P10	@100
2 Rending Moment Canacity				
2. Dending Moment Capacity	5115 I	180	5110	- 1
(.) Load Combination No.	20	20	END-J	
(*) Edda Combination No.	627.39	200	625.05	
Eactored Strength (MRd)	710.51	225.77	710 51	
Check Ratio (MEd/MRd)	0.8830	0.9865	0.8797	- 1
Neutral Axis (x/d)	0.2891	0.1405	0.2891	
(+) Load Combination No.	18	18	18	
Moment (M.Ed)	325.66	256.31	330.69	
Factored Strength (M.Rd)	346.98	267.77	346.98	
Check Ratio (M.Ed/M.Rd)	0.9386	0.9572	0.9531	
Neutral Axis (x/d)	0.1892	0.1494	0.1892	
Required Rebar Top (As.top)	0.0055	0.0016	0.0055	
Required Rehar Bot (As bot)	0.0024	0.0018	0.0024	
required repair bot (As.bot)				

10-3. Design Output (Beam)

Procedure

Menu>Design>RC design>

Concrete code design>

Beam Design

- 1 Click Detail...
- 2 Conform Detail Calculation report as per EN 2 :2004

Code : EC2 Sorted by	:04 Ом	ember		ι	Init: ki	Ν,	ľ
MEMB	() Pr	operty Sec	tion	fck	1		
SECT	SEL	Bc	Hc	fyk	POS	CH	
Snan		bf	hf	fvw		K	
1		Be	am	30000 0		ОК	
3	П	0.6000	0.5000	400000	M	OK	
8.0000		0.0000	0.0000	400000	J	OK	
2		Be	am	30000.0	1	OK	
3		0.6000	0.5000	400000	M	ОК	
8.0000		0.0000	0.0000	400000	J	OK	
3		Be	am	30000.0	1	OK	
3		0.6000	0.5000	400000	M	OK	
8.0000	1	0.0000	0.0000	400000	J	OK	
4		edge c	olumns	30000.0	1	OK	
1	Г	0.6000	0.6000	400000	M	OK	
8.0000		0.0000	0.0000	400000	J	OK	
5		edge c	olumns	30000.0	1	OK	
1		0.6000	0.6000	400000	M	OK	
8.0000		0.0000	0.0000	400000	J	OK	
6		edge c	olumns	30000.0	- I -	OK	
1	Г	0.6000	0.6000	400000	M	OK	
8.0000		0.0000	0.0000	400000	J	OK	
7		edge c	olumns	30000.0	- I	OK	
1		0.6000	0.6000	400000	M	OK	
Connect	t Mode	View					
Selec	t All	1 u	Inselect /	All	Re-ca	lculatio	n
Graph	nic		Detail		Summar	у	>
Ontion for	r Detail	Print Po	sition		Upd	ate Re	bar
option to							

2

File Edit Vie	itor - lab	p I_KC_Building eurocode.rcsj
	ew Win	dow. Help
	λ [m]	
	9	◈ᇻᄤᆝᄐᆝᄤᄤᆝᆇᆃᆝᄐᆡᄻᄻᄻᄻᆙᇔᄮᆣᄕᆋᄰᇾᄡᆈᄪᄐᄛᅴᆞ
midas G	зen – к	C-Beam Design [Eurocode2:04 & NIC2018] Gen 2025
4	+=====	++
f	MIDA	S(Modeling, Integrated Design & Analysis Software)
	mida	s Gen - Design & checking system for windows
-	+======	+
	RC-M	ember(Beam/Column/Brace/Wall) Analysis and Design
	i Base	a on Eurocode2:04, Eurocode2, ACI318-19, ACT318M_14 ACT
	i I	ACI318-08, ACI318-05, ACI318-02, ACI318-99,
	' I	ACI318-95, ACI318-89, NSR-10, CSA-A23.3-94,
5		BS8110-97, AIJ-WSD99, GB/T50010-10,
1	1	GB50010-02, IS456:2000, KDS 41 20 : 2022,
(I	KDS 41 30 : 2018, KCI-USD12, KCI-USD07,
	l	KCI-USD03, KCI-USD99, KSCE-USD96, AIK-USD94,
		AIK-WSD2K, TWN-USD112, TWN-USD100, TWN-USD92,
	1	NSCP 2015, NIC-DCEC(2023), NIC-DCEC(2017),
	 +======	(C) 210/CE 120/2
	MIDA	S Information Technology Co., Ltd. (MIDAS IT)
	MIDA	S IT Design Development Team
-	+=====	+
	I	HomePage : www.MidasUser.com
-	+======	+
	Gen	2025
-		
*. 1	DEFINIT	ION OF LOAD COMBINATIONS WITH SCALING UP FACTORS.
LCE	вC	Loadcase Name(Factor) + Loadcase Name(Factor) + Loadcase Name(Factor)
	 1 1	DT / 1 250\ , TT / 1 500\
Annual Contraction of the International Contractional Contr	1 1 2 1	DL(1350) + LL(1500) + LL(1500)
		DD(1.300) 1 DD(1.300) T WA(0.300)
2	3 1	DL(1.350) + LL(1.500) + WY(0.900)
	3 1 4 1	DL(1.350) + LL(1.500) + WY(0.900) DL(1.350) + LL(1.050) + WX(1.500)
	3 1 4 1 5 1	DL(1.350) + LL(1.500) + WY(0.900) DL(1.350) + LL(1.050) + WX(1.500) DL(1.350) + LL(1.050) + WY(1.500)
	3 1 4 1 5 1 6 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	3 1 4 1 5 1 6 1 7 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	3 1 4 1 5 1 6 1 7 1 8 1	$\begin{array}{ccccccc} DL(1.350) + & LL(1.500) + & WY(0.900) \\ DL(1.350) + & LL(1.050) + & WX(1.500) \\ DL(1.350) + & LL(1.050) + & WY(1.500) \\ DL(1.350) + & LL(1.500) + & WX(-0.900) \\ DL(1.350) + & LL(1.500) + & WY(-0.900) \\ DL(1.350) + & LL(1.050) + & WY(-0.900) \\ DL(1.350) + & LL(1.050) + & WX(-0.500) \\ DL(1.350) + & UL(1.050) + & WX(-0.500) \\ DL(1.500) + & WX(-0.$
	3 1 4 1 5 1 6 1 7 1 8 1 9 1	$\begin{array}{cccccccc} DL(1.350) + & LL(1.500) + & WY(0.900) \\ DL(1.350) + & LL(1.050) + & WX(1.500) \\ DL(1.350) + & LL(1.050) + & WY(1.500) \\ DL(1.350) + & LL(1.500) + & WX(-0.900) \\ DL(1.350) + & LL(1.500) + & WY(-0.900) \\ DL(1.350) + & LL(1.050) + & WX(-1.500) \\ DL(1.350) + & LL(1.050) + & WY(-1.500) \\ DL(1.350) + & LL(1.050) + & WY(-1.500) \\ DL(1.350) + & LL(1.050) + & WY(-1.500) \\ DL(1.050) + & UV(0.050) + & WY(-1.500) \\ DL(1.050) + & WV(-1.500) $
	3 1 4 1 5 1 6 1 7 1 8 1 9 1 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	3 1 4 1 5 1 6 1 7 1 8 1 9 1 0 1 1 1 2 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 0 1 1 1 2 1 3 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 0 1 1 1 2 1 3 1 4 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 9 1 1 1 2 1 3 1 4 1 5 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 1 1 2 1 3 1 4 1 5 1 6 1 6 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$
	2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 7 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Eurocode2:04 RC-Column Desig...

 \times

Procedure

Menu>Design > RC Design > Concrete code design> Column Design

• Sorted by > Member (on)

SECT SEC Bc Hc Height fyw CH 51 edge columns 30000.0 400000 OK 52 edge columns 30000.0 400000 NM 53 edge columns 30000.0 400000 NM 53 edge columns 30000.0 400000 NM 54 edge columns 30000.0 400000 NM 55 r edge columns 30000.0 400000 NM 55 r edge columns 30000.0 400000 NM 56 r edge columns 30000.0 400000 NM 56 r edge columns 30000.0 400000 NM 57 edge columns 30000.0 400000 NM 58 r edge columns 30000.0 400000 NM 59 r edge columns 30000.0 400000 NM 1 r edge columns 30000.0	MEMB	SEI	Sec	ction	fck	fyk	
51 □ edge columns 30000.0 400000 OK 1 □ 0.6000[0.6000 4.0000 400000 OK 52 □ edge columns 30000.0 400000 NM 1 □ 0.6000[0.6000 4.0000 400000 NM 53 □ edge columns 30000.0 400000 NM 54 □ edge columns 30000.0 400000 NM 54 □ edge columns 30000.0 400000 NM 55 □ edge columns 30000.0 400000 NM 1 □ 0.6000[0.6000 4.0000 400000 NM 56 □ edge columns 30000.0 400000 NM 1 □ 0.6000[0.6000 4.0000 400000 NM 57 □ edge columns 30000.0 400000 NM 1 □ 0.6000[0.6000 4.0000 400000 NM <tr< td=""><td>SECT</td><td>JEL</td><td>Bc</td><td>Hc</td><td>Height</td><td>fyw</td><td></td></tr<>	SECT	JEL	Bc	Hc	Height	fyw	
1 1 0.6000[6.6000] 4.0000 400000 OK 52 c edge columns 3000.0 400000 NM 1 C 6.6000[6.6000] 4.0000 400000 NM 53 c edge columns 3000.0 400000 NM 54 v edge columns 3000.0 400000 NM 1 v 0.6000[6.6000] 4.0000 400000 NM 1 v edge columns 3000.0 400000 NM 55 c edge columns 3000.0 400000 NM 56 c edge columns 3000.0 400000 NM 56 c edge columns 3000.0 400000 NM 1 C 0.6000[6.6000 4.0000 400000 NM 1 C edge columns 3000.0 400000 NM 1 C edge columns 3000.0 4000000 NM	51	_	edge c	olumns	30000.0	40000	0
52 Constraints Ge columns 30000.0 400000 NM 53 Constraints Ge columns 30000.0 400000 NM 53 Constraints Ge columns 30000.0 400000 NM 53 Constraints Ge columns 30000.0 400000 NM 54 Constraints Ge columns 30000.0 400000 NM 55 Constraints Ge columns 30000.0 400000 NM 56 edge columns 30000.0 400000 NM 56 cdge columns 30000.0 400000 NM 57 edge columns 30000.0 400000 NM 58 cdge columns 30000.0 400000 NM 59 edge columns 30000.0 400000 NM 6000 6000 4.0000 400000 NM 7 edge columns 30000.0 400000 NM 1 Co 6000 6.000 4.00000	1		0.6000	0.6000	4.0000	40000	10 UK
1 0.6000 6.6000 4.0000 400000 NM 53 ⊂ edge columns 3000.0 400000 NM 1 ⊂ 0.6000 6.6000 4.0000 NM 54 ∠ edge columns 3000.0 400000 NM 54 ∠ edge columns 3000.0 400000 NM 1 ∠ 0.6000 6.6000 4.0000 400000 NM 1 ∠ edge columns 3000.0 400000 NM 1 C 0.6000 6.6000 4.0000 400000 NM 55 C edge columns 3000.0 400000 NM 1 C 0.6000 6.6000 4.0000 400000 NM 60 C edge columns 3000.0 400000 NM 1 C edge columns 3000.0 400000 NM 60 C Interior column 3000.0 400000 NM 0.6000 6.6000 4.000	52	_	edge c	olumns	30000.0	40000	10
53 C edge columns 30000.0 400000 NM 54 edge columns 30000.0 400000 NM 54 edge columns 30000.0 400000 NM 1 C edge columns 30000.0 400000 NM 55 C edge columns 30000.0 400000 NM 56 C edge columns 30000.0 400000 NM 56 C edge columns 3000.0 400000 NM 57 C edge columns 30000.0 400000 NM 58 C edge columns 30000.0 400000 NM 59 C edge columns 30000.0 400000 NM 1 C 0.6000/0.6000 4.0000 400000 NM 2 C 0.7500/0.7500 4.0000 400000 NM 2 C Interior column 30000.0 400000 NM 62 C	1		0.6000	0.6000	4.0000	40000	10
1 0.6000[6.6000 4.0000 400000 54 9 edge columns 30000.0 400000 1 0.6000[6.600 4.0000 400000 55 C edge columns 30000.0 400000 55 C edge columns 30000.0 400000 NM 56 C edge columns 30000.0 400000 NM 56 C edge columns 30000.0 400000 NM 57 C edge columns 30000.0 400000 NM 58 C edge columns 30000.0 400000 NM 58 C edge columns 30000.0 400000 NM 59 C edge columns 30000.0 400000 NM 1 C Interior column 30000.0 400000 NM 2 C Interior column 30000.0 400000 NM 2 C Interior column 30000.0 400	53	_	edge c	olumns	30000.0	40000	0
54 C edge columns 30000.0 400000 NM 1 C 6000/0.6000 40000 NM 55 C edge columns 30000.0 400000 NM 1 C edge columns 30000.0 400000 NM 56 C edge columns 30000.0 400000 NM 57 C edge columns 30000.0 400000 NM 57 C edge columns 30000.0 400000 NM 1 C 0.6000/0.6000 4.0000 400000 NM 60 0.6000/0.6000 4.0000 400000 NM 1 C 0.6000/0.6000 4.0000 400000 NM 1 C edge columns 30000.0 400000 NM 2 C Interior column 30000.0 400000 NM 2 C Interior column 30000.0 400000 NM 2 C	1		0.6000	0.6000	4.0000	40000	10
1 0 0.6000 (b.6000 4.0000 400000 55 C edge columns 3000.0 400000 NM 1 C 0.6000 (b.6000 4.0000 400000 NM 56 C edge columns 3000.0 400000 NM 56 C edge columns 3000.0 400000 NM 1 C edge columns 3000.0 400000 NM 1 C edge columns 3000.0 400000 NM 58 C edge columns 3000.0 400000 NM 59 C edge columns 3000.0 400000 NM 1 Interior column 3000.0 400000 NM 2 C 0.7500 (0.7500 4.0000 400000 NM 2 C Interior column 3000.0 400000 NM 2 C Interior column 3000.0 400000 NM 2 C	54		edge c	olumns	30000.0	40000	
55 C edge columns 30000.0 400000 NM 56 C edge columns 30000.0 400000 NM 56 edge columns 30000.0 400000 NM 1 C edge columns 30000.0 400000 NM 57 C edge columns 30000.0 400000 NM 58 C edge columns 30000.0 400000 NM 58 edge columns 30000.0 400000 NM 59 C edge columns 30000.0 400000 NM 1 C offool 6.6000 4.0000 400000 NM 2 C Interior column 30000.0 400000 NM 0.7500(0.7500 4.0000 400000 NM NM 2 C Interior column 30000.0 400000 NM 2 C Interior column 30000.0 400000 NM 2 C <	1	V	0.6000	0.6000	4.0000	40000	10
1 0.6000 6.6000 4.0000 400000 56 ⊏ edge columns 3000.0 400000 NM 1 □ 0.6000 6.6000 4.0000 MM 57 ⊏ edge columns 3000.0 400000 NM 57 □ edge columns 3000.0 400000 NM 57 □ edge columns 3000.0 400000 NM 1 □ 0.6000 6.6000 4.0000 400000 NM 58 ⊏ edge columns 3000.0 400000 NM 60 0.6000 0.6000 4.0000 400000 NM 60 □ Interior column 3000.0 400000 NM 2 □ Interior column	55		edge c	olumns	30000.0	40000	
56 C edge columns 30000.0 400000 NM 1 C 6000[0.6000 400000 NM 57 edge columns 30000.0 400000 NM 1 C edge columns 30000.0 400000 NM 58 edge columns 30000.0 400000 NM 59 C edge columns 30000.0 400000 NM 60 0.6000[0.6000 4.0000 400000 NM 1 C edge columns 3000.0 400000 NM 60 Interior column 3000.0 400000 NM 2 C Interior column 3000.0	1		0.6000	0.6000	4.0000	40000	0
1 0.6000 0.6000 40000 400000 57 ⊂ edge columns 3000.0 400000 NM 1 0.6000 0.6000 4.0000 400000 NM 58 ⊂ edge columns 3000.0 400000 NM 59 ⊂ edge columns 3000.0 400000 NM 1 C edge columns 3000.0 400000 NM 1 C edge columns 3000.0 400000 NM 1 C edge columns 30000.0 400000 NM 0 0.6000 0.6000 4.0000 400000 NM 2 C Interior column 30000.0 400000 NM 62 Interior column 30000.0 400000 NM 2 C Interior column 30000.0 400000 NM 2 C Interior column 30000.0 400000 NM 2 C Interior column 30000.0 </td <td>56</td> <td>_</td> <td>edge c</td> <td>olumns</td> <td>30000.0</td> <td>40000</td> <td></td>	56	_	edge c	olumns	30000.0	40000	
57 C edge columns 30000.0 400000 NM 1 C edge columns 30000.0 400000 NM 58 C edge columns 30000.0 400000 NM 1 C 0.6000 6.6000 4.0000 400000 NM 59 C edge columns 30000.0 400000 NM 60 C interior column 30000.0 400000 NM 2 C 0.7500 0.7500 4.0000 400000 NM 2 C 0.7500 0.7500 4.0000 400000 NM 2 C Interior column 30000.0 400000 NM 2 C 0.7500 0.7500 0.0000 400000 NM <td>1</td> <td></td> <td>0.6000</td> <td>0.6000</td> <td>4.0000</td> <td>40000</td> <td>0</td>	1		0.6000	0.6000	4.0000	40000	0
1 0.6000 0.6000 40000 400000 58 ⊏ edge columns 3000.0 400000 KM 1 □ 0.6000 0.6000 4.0000 400000 KM 59 □ edge columns 3000.0 400000 NM 60 □ Interior column 3000.0 400000 NM 2 □ 0.7500 0.7500 4.0000 400000 NM 61 □ Interior column 3000.0 400000 NM 62 □ Interior column 3000.0 400000 NM 62 □ Interior column 3000.0 400000 NM 63 ⊏ □ Interior column 3000.0 400000 NM 2 □ 0.7500 0.7500 4.0000 400000 NM 2 □ 0.7500 0.7500 4.0000 400000 NM 2 □ 0.7500 0.7500 4.0000 400000 NM	57		edge c	olumns	30000.0	40000	
58 C edge columns 30000.0 400000 OK 1 C 0.6000/0.6000 4.0000 400000 NM 59 C edge columns 30000.0 400000 NM 1 C edge columns 30000.0 400000 NM 2 Interior column 30000.0 400000 NM 61 C Interior column 30000.0 400000 NM 62 Interior column 30000.0 400000 NM 62 C Interior column 30000.0 400000 NM 62 C Interior column 30000.0 400000 NM 63 C Interior column 30000.0 400000 NM 7 Interior column 30000.0 400000 NM 0.7500/0.7500 4.0000 400000 NM 0.7500/0.7500 4.0000 400000 NM 0.7500/0.7500 4.00000 400000 NM <	1		0.6000	0.6000	4.0000	40000	0
1 0.6000 6.6000 4.0000 400000 Graph 59 ⊂ edge columns 3000.0 400000 NM 1 0.6000 6.6000 4.0000 400000 NM 600 Γ Interior column 3000.0 400000 NM 2 Γ Int	58	_	edge c	olumns	30000.0	40000	
59 C edge columns i 30000.0 400000 NM 1 C 0.6000 0.6000 4.0000 400000 NM 2 C Interior column 30000.0 400000 NM 2 C 0.7500 0.7500 4.0000 400000 NM 2 C Interior column 3000.0 400000 NM 2 C 0.7500 0.7500 4.0000 400000 NM 2 C 0.7500 0.7500 4.0000 400000 NM 2 C Interior column 3000.0 400000 NM 2 C Interior column 3000.0 400000 NM 3 C Interior column 3000.0 400000 NM 3 C Interior column 3000.0 400000 NM <tr< td=""><td>1</td><td>1</td><td>0.6000</td><td>0.6000</td><td>4.0000</td><td>40000</td><td></td></tr<>	1	1	0.6000	0.6000	4.0000	40000	
1 0.6000 0.6000 4.0000 400000 60 □ Interior column 3000.0 400000 2 □ 0.7500 0.7500 4.0000 400000 61 □ Interior column 3000.0 400000 NM 2 □ Interior column 3000.0 400000 NM 62 □ Interior column 3000.0 400000 NM 2 □ 0.7500 0.7500 4.0000 400000 NM 2 □ Interior column 30000.0 400000 NM 3 □ Interior column 3000.0 400000 NM 0.7500 0.7500 4.0000 400000 NM 0.7500 0.7500 4.00000 NM NM 0.7500 0.7500 4.00000 NM NM 0.7500 0.7500 4.00000 NM NM <td>59</td> <td></td> <td>edge c</td> <td>olumns:</td> <td>30000.0</td> <td>40000</td> <td></td>	59		edge c	olumns:	30000.0	40000	
60 □ Interior column 30000.0 400000 NM 2 □ Interior column 30000.0 400000 NM 2 □ □ Interior column 30000.0 400000 NM 2 □ □ □ 1500 [0.7500 4.0000 400000 NM 62 □ □ Interior column 30000.0 400000 NM 2 □ □ Interior column 30000.0 400000 NM 63 □ □ Interior column 30000.0 400000 NM ○ connect Model View □ □ Select All □ Re-calculatio	1		0.6000	0.6000	4.0000	40000	0
2 0.7500[0.7500] 4.0000 400000 Minimized 61 □ Interior column 30000.0 400000 NM 2 □ 0.7500[0.7500] 4.0000 400000 NM 62 □ Interior column 30000.0 400000 NM 2 □ 0.7500[0.7500] 4.0000 4000000 NM 3 □ 0.7500[0.7500] 4.0000 400000 NM ○ Connect Model View Re-calculatio Re-calculatio	60		Interior	column	30000.0	40000	
61 2 Interior column 30000.0 400000 400000 NM 62 2 □ Interior column 3000.0 400000 400000 NM 63 2 □ Interior column 3000.0 400000 400000 NM 63 2 □ Interior column 3000.0 400000 400000 NM Connect Model View Select All Re-calculatio Re-calculatio	2		0.7500	0.7500	4.0000	40000	0
2 I 0.7500[0.7500] 4.0000 400000 62 Interior column 3000.0 400000 NM 63 □ Interior column 3000.0 400000 NM 2 □ Interior column 30000.0 400000 NM 2 □ 0.7500[0.7500] 4.0000 400000 NM 2 □ 0.7500[0.7500] 4.0000 400000 NM Connect Model View	61		Interior	column	30000.0	40000	
62 □ Interior column 30000.0 400000 NM 63 □ Interior column 30000.0 400000 NM 2 □ Interior column 30000.0 400000 NM 2 □ 0.7500 7.500 4.0000 400000 NM Connect Model View	2		0.7500	0.7500	4.0000	40000	0
2 0.7500[0.7500] 4.0000 400000 63 □ Interior column 30000.0 400000 2 □ 0.7500[0.7500] 4.0000 400000 Ocnnect Model View Select All Re-calculatio	62		Interior	column	30000.0	40000	
63 □ Interior column 30000.0 400000 NM 2 □ 0.7500 7.500 4.0000 400000 NM Connect Model View	2		0.7500	0.7500	4.0000	40000	0
2 0.75000.7500 4.0000 400000 Connect Model View Select All Unselect All Re-calculatio	63		Interior	column	30000.0	40000	
Connect Model View Select All Re-calculatio	2		0.7500	0.7500	4.0000	40000	0
Select All Unselect All Re-calculatio	Connec	t Mode	el View				
	Selec	t All		Unselect	All	Re-c	alculatio

	and a second			_
Design Condition			z	
Design Code : Eurocode2:04	UNIT SYSTEM :	kN, m	+	
Material Data : fok = 30000 fok	400000 frw = 400000 KPa	T		
Column Height : 4 m	100000, 1/1 - 100000 10 3			
Section Property : edge columns (N	5 : 1)		11 I	
Rebar Pattern : 28 - 8 - P20	Ast = 0.00879648 m ² (pst = 0.02	24) 0 '	1 3	-
Axial and Moments Capaci	ty	5.	E	
Load Combination : 20 (Pos : J)		+ <u>§</u> +		
Concentric Max. Axial Load N.R.	imax = 10083.7 kN		0,0	1
Axial Load Ratio N.Ed	/N.Rd = 4596.35/4337.02	= 1,060 > 1.000 N.G		
Moment Ratio M.Ec	/ M.Rd = 1052.22 / 974.443	= 1.080 > 1.000 N.G		
ME	ly/M.Rdy = 1048.20/970.877 lz/M.Rdz = 91.9270/83.2860	= 1,080 > 1.000 N.G = 1,104 > 1,000 N.G		
M-N Interaction Diagram				
12500	Red 90°	M.Rd(kN-m)		
10750 10084	A=0.94 ···· 10083.7	2 0.00		
0000	9039.99	301.86		
7250	7821.36	552.48		
5500	0034.37	735.31		
3750	4523 25	958.44		
2000	3929.47	1007.73		
	3412.67	1033.89		
-8-	2607.00	1020.76		
-1500	1584.27	951.34		
-3250	284.97	773.27		
-5000	-1688.84	354.95		
0 150 900 150 150 150 150 150 150 150 150 150 1	0 0 0 0 -3059.65	0.00		
Shear Capacity				
[END]	y (LCB : 19, POS : J)	z (LCB: 20, POS: J)		
Applied Shear Force (V.Ed)	49.7209 kN	331.312 kN		
V.Ed / V.Rdo	49.7209/321.502 = 0.155	331.312/321.502 = 1.	331	
V.Ed / V.Rds	49.7209 / 114.701 = 0.433	331.312/376.875 = 0.	379	
V.Ed / V.Rdmax	49.7209/1529.67 = 0.033	331.312 / 1529.67 = 0.	217	
Asw-H.req	0.00066 m²/m, 2-P10 @230	0.00197 m²/m, 2-P10 @	270	
[MIDDLE 1	y (LCB : 19, POS : 1/2)	z (LCB : 20. POS : 1/2		
Applied Shear Force (V.Ed)	49.7209 kN	331.312 kN		
V.Ed/V.Rdc	49.7209 / 321.502 = 0.155	331.312/321.502 = 1.	031	
V.Ed / V.Rds	49.7209 / 114.701 = 0.433	331.312/376.875 = 0.	379	
V.Ed / V.Rdmax	49.7209 / 1529.67 = 0.033	331,312 / 1529.67 = 0.	217	
Shear Ratio	0.155 < 1.000 O.K	0.879 < 1.000 O.K		
Asw-H.req	0.00066 m ² /m, 2-P10 @230	0.00197 m²/m, 2-P10 @	170	

10-3. Design Output (Wall)

Procedure

Menu>Design > RC Design > Concrete code design> Shear wall design

 Sorted by>Wall ID+story and select a wall>Graphic

Such a window explaining the design would be displayed

Code : EC2:04	(Method 1)	Change	Unit	: kN ,	, m
Sorted by) Wall ID (WID)		Sort R	esult
WID SE	Wall	Mark	fck	fyk	СН
Story L	Lw	HTw	hw	fyw	K
	Ww	0001	30000.0	400000	NIN AL
1F	6.7500	4.0000	0.4500	400000	
2 _	Ww	0002	30000.0	400000	NIN AL
1F	6.7500	4.0000	0.4500	400000	
1 –	wM	0001	30000.0	400000	NIM /
2F	6.7500	3.1500	0.4500	400000	VIVIV
2 _	wM	0002	30000.0	400000	ov
2F	6.7500	3.1500	0.4500	400000	ON
1 🗖	Ww	0001	30000.0	400000	01
3F 🔽	6.7500	3.1500	0.4500	400000	UN
2 _	Ww	0002	30000.0	400000	01
3F	6.7500	3.1500	0.4500	400000	UN
1 -	Ww	0001	30000.0	400000	01
4F	6.7500	3.1500	0.4500	400000	
2 _	Ww	0002	30000.0	400000	014
4F	6.7500	3.1500	0.4500	400000	UK
1 _	wM	0001	30000.0	400000	04
5F	6.7500	3.1500	0.4500	400000	UK
2 _	Ww	0002	30000.0	400000	01
5F	6.7500	3.1500	0.4500	400000	UN
1 =	Ww	0001	30000.0	400000	04
6F	6.7500	3.1500	0.4500	400000	UN
2 _	Ww	0002	30000.0	400000	01
6F	6.7500	3.1500	0.4500	400000	UN
1	wM	0001	30000.0	400000	OK
7F '	6.7500	3.1500	0.4500	400000	
Connect Mo	del View				
Select A		Unselect	All	Re-calo	ulation
Graphic		Detail		Summary	
the second s					

