

1차원 유동 네트워크

1D Flow Networks

1. Abstract

1 차원 유동 네트워크 모델링은 단면의 형상이 단순하여 1 차원 요소를 이용한 모델링으로 간략화할 수 있는 채널(Channel)을 포함한 시스템의 유동 특성을 계산하기 위해 사용합니다. 특히 단면 형상의 규모에 비해 길이가 긴 관(Pipe) 내부 유동의 경우 완전히 발달된 유동 특성은 단면에 따라 일정하고 단순함에도 불구하고 3 차원 관으로 모델링하여 해석을 수행하면 필요 이상으로 많은 수의 요소망을 필요로 하게 되며, 결과적으로 과도한 계산 비용이 초래됩니다. midas NFX CFD 의 1 차원 유동 네트워크 모델링 기능을 이용하면 2 점 및 다절점 조건을 통해 분절된 채널 유동을 계산할 수 있을 뿐 아니라, 채널 표면의 열교환 및 3 차원 요소망과의 커플링 계산을 수행할 수 있습니다.

2. Technology 배경

2-1. 1 차원 유동 네트워크 기능

많은 분절점(Junction)을 포함하고 있는 배관 시스템에 대해서, 각 분절점에 분배되는 유량비 및 관내 유압, 혹은 필요할 경우 각 지점의 유체 온도를 계산하기 위해 유동 해석을 필요로 하는 경우가 있습니다. 특히 플랜트 배관 시스템의 경우 그 규모가 상당하고 관 및 분절점의 개수가 많아서(그림 1), 이를 3 차원 유동 해석으로 진행하는 데에 몇 가지 어려움이 따르게 됩니다. 많은 수의 요소망을 필요로 함으로서 과도한 계산 비용이 초래되며, 모델의 규모에 비해 관내 유동의 유선 길이가 길어지게 되어 해석의 수렴성에도 좋지 않은 영향을 줄 수 있습니다.

단면의 형상이 단순하고 그 규모에 비해 길이가 긴 관의 내부 유동은 얼마 지나지 않아 완전 발달(Fully developed)되며, 모든 유동 변수는 단순히 길이의 함수로서 표현이 가능합니다. 완전 발달 유동의 경우 이미 연구된 다수의 결과들이 존재하여 관내 유체 현상을 단순화하는 데 도움을 줄 수 있습니다. 분절점의 형상이나 확관 및 축관, 심지어는 관의 재질마저도 어느 정도 정형화가 가능하여, 이에 따라 많지 않은 케이스로 거의 모든 배관 시스템을 표현하는 것이 가능하며, 이를 이용하면 시스템을 표현하고 이에 따라 설계된 단순한 1 차원 유동 방정식을 해석하는 것이 가능합니다. 또한 사용자들은 같은 단면의 서로 다른 위치에서의 물리량 차이보다, 길이에 따른 물리량의 차이를 알고자 하는 경우가 많습니다.

그림 1 화공 플랜트의 배관 시스템

midas NFX CFD 에서는 2 절점 및 다절점 경계조건 기능을 이용하여 1 차원 요소에 대한 연결정보를 입력할 수 있으며, 열해석도 수행할 수 있습니다.

1 차원 유동 네트워크 기능은 플랜트 뿐 아니라 얇고 긴 배관을 포함한 많은 시스템에 대해 효율적인 계산을 가능하게 합니다. midas NFX CFD 에서는 기본적으로 제공되는 네트워크 시스템의 해석 뿐 아니라, 1 차원과 3 차원 요소의 커플링 기능을 지원합니다. 이를 이용하면 챔버와 관이 연결된 시스템의 해석이 가능합니다. 또한, 유체 및 고체에 삽입된 배관 시스템의 열교환 해석 역시 가능합니다. (**그림 2**)

그림 2 (a)실제 열 교환기의 형상과 (b)1D 모델링 형상

이 밖에도 단순 확관 및 축관 해석 기능을 이용한 CDV 노즐 해석 뿐 아니라, 샤워 헤드, 복잡한 챔버 시스템의 해석이 1 차원 유동 네트워크 기능을 통해 가능합니다.

2-2. 부손실 계수

관 유동에서 유체에 적용되는 벽면 마찰력은 유체 거동을 계산하는 과정에서 중요한 변수로 작용합니다. 이 중 형상이 변하는 지점에서 생기는 손실 계수를 부손실 계수(minor loss coefficient)라고 하는데, 이 값은 형상에 따라 어느 정도 알려진 값을 사용합니다. 대표적인 급변 형상에 대한 부손실 계수 *K*_L 을 **그림 3** 에 나타내었습니다. 연결부 형상에 따라 부손실 계수를 최대 두 개로 나타내었습니다.

1 플랜지 형태로 접합된 것과 (flanged), 쓰레드 형태로 접합된 것(threaded)의 두 가지를 나타 내었습니다.

▲플랜지 형태로 접합된 것

▲쓰레드 형태로 접합된 것

MIDAS

본 이론은 midas NFX 이론 매뉴 얼에 근간한 내용이며, 관련한 자세한 내용은 설치폴더에 저장 된 이론 매뉴얼에서 확인할 수 있습니다.

그림 3 대표적인 관 연결부의 부손실 계수

3. Technology 이론

3-1. 지배방정식

1차원 파이프 또는 채널 유동은 Navier-Stokes 방정식에 단면적을 고려한 형태, 즉 질량보존 또는 연속방정식과 운동량보존식을 따릅니다. 질량보존 방정식은 다음과 같 습니다.

 $A(x)\frac{\partial\rho(x,t)}{\partial t} + \frac{\partial\rho(x,t)A(x)u(x,t)}{\partial x} = 0$ (1) A(x) : 단면적u(x,t) : 속도

비압축성 유동의 경우에는 밀도 변화가 없으므로, 다음과 같이 간단하게 표현할 수 있습니다.

$$\frac{\partial Au}{\partial x} = 0 \tag{2}$$

운동량보존식 역시 단면적 A를 이용하여 간단하게 정리할 수 있으나, 유체의 점성 에 의한 효과는 경험적인 벽면 마찰력을 통하여 고려합니다.

벽면 마찰력은 동압력(dynamic pressure)과 Darcy-Weisbach 마찰인자(friction factor) 에 비례한다고 가정하여 다음과 같이 나타낼 수 있습니다.

$$F_{\nu} = fA \frac{\rho u^2}{2D_h} \tag{4}$$

f: Darcy-Weisbach 마찰인자D_h: 수력학적 직경(hydraulic diameter)

C

Е

유동의 속도가 느린 층류의 경우 마찰인자 f는 층류 형상계수(shape coefficient)와 Reynolds 수에 의해 결정된다고 알려져 있으며 다음과 같습니다.

$$f = \frac{C}{\text{Re}}$$
(5)
: 층류 형상계수

파이프 또는 채널 유동의 Reynolds 수는 아래와 같이 정의할 수 있습니다.

$$\operatorname{Re} = \frac{uD_{h}}{v} \tag{6}$$

난류 유동의 경우에는 Reynolds 수와 표면 조도높이(surface roughness height)에 의해 마찰인자 *f* 가 결정되며, 실험적 데이터에 근거한 Colebrook 공식을 이용합니다.

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{\varepsilon}{3.7D_h} + \frac{2.51}{\operatorname{Re}\sqrt{f}}\right)$$

$$: \Sigma \Sigma \Sigma \Sigma 0$$
(7)

midas NFX CFD 에서는 Re>2300 인 영역에 대해 난류 유동으로 판단하여 식 (7) 을 적용하지만, 일반적으로 2000 < Re < 4000 의 경우에는 천이영역으로 알려져 있으 며, 마찰인자를 결정하는 방법이 정립되어 있지 않습니다. 열전달 지배방정식은 단면 적을 고려했을 경우 다음과 같이 정리할 수 있습니다. 아래의 식에서 유체의 점성에 의한 에너지 소산항은 생략하였습니다.

 $\rho C_{v}A(x)\frac{\partial T(x,t)}{\partial t} + \rho C_{v}A(x)u\frac{\partial T(x,t)}{\partial x} - \frac{\partial}{\partial x}(kA(x)\frac{\partial T(x,t)}{\partial x}) = \rho AQ - p\frac{\partial A(x)u}{\partial x}$ (8) $C_{v} \qquad : 정적비열(\text{specific heat at constant volume})$ $Q \qquad : 발열(\text{heat source})$

3-2. 네트워크 정의와 해석조건

파이프 또는 채널 내부의 유체는 위치에 따른 압력차이에 의해 흐름이 생성되며, 동압력에 비례하는 벽면 마찰력은 압력구배를 형성케 합니다. 이와 같이 생성된 유동의 압력차를 압력손실(pressure loss)이라 하며, 압력손실은 전압력(total pressure)의 차이로 나타나기 때문에 에너지 손실(energy loss)이라 불리기도 합니다. 앞서 설명한 Darcy-Weisbach 마찰인자에 의해 계산되는 압력손실은 1 차원 유동의

가장 큰 손실 요인이므로 주손실(major loss)이라 합니다. 이 밖에 표면 조도높이로 계산할 수 없는 채널 내부 특성에 의한 손실 또는 네트워크 구성을 위해 사용되는 피팅(fitting), 밸브(valve) 등의 다양한 구성요소(component)에 의한 에너지 손실이 존재하며, 이들을 통틀어 부손실(minor loss)이라 합니다. midas NFX CFD 에서는 Darcy-Weisbach 마찰인자 이외에 채널 내부 특성에 의한 손실을 고려할 수 있도록 부손실 계수(minor loss coefficient)를 입력할 수 있습니다.

$$\Delta p_{\text{total}} = f \frac{1}{D_h} \frac{\rho u^2}{2} \Delta L + f_{\text{minor}} \frac{1}{D_h} \frac{\rho u^2}{2} \Delta L \tag{9}$$

f: Darcy-Weisbach 마찰인자fminor: 부손실 계수

• 연결조건의 정의

피팅, 밸브 또는 펌프(pump) 등의 네트워크 구성요소는 앞서 설명한 부손실 외에 다양한 원인을 통하여 유동에 영향을 줍니다. midas NFX CFD 에서는 연결(connection) 조건을 정의하여 모든 구성요소의 속성을 모델링할 수 있습니다. 특히 3 개 이상의 1 차원 요소가 하나의 절점을 공유하는 네트워크의 경우에는 특별한 구성요소가 없더라도 반드시 연결조건을 설정하여 절점분리를 해야 합니다. 유동해석을 위한 1 차원 요소간의 연결조건은 유량의 연속성과 에너지 보존을 기초로 정의할 수 있습니다. 예를 들어 **그림 4** 의 3 개 요소가 한 곳에서 만나는 연결의 경우, 에너지 손실을 고려하지 않는다면 다음의 식을 만족하는 유동이 발생합니다.

$$\rho_1 A_1 u_1 + \rho_2 A_2 u_2 + \rho_3 A_3 u_3 = 0, \ p_1^{\text{total}} = p_2^{\text{total}} = p_3^{\text{total}}$$
(10)

또한, 열전달 해석의 경우에는 다음의 식을 적용하여 연결조건을 구성합니다.

 $\rho_1 C_v u_1 T_1 + \rho_2 C_v u_2 T_2 + \rho_3 C_v u_3 T_3 = 0 \tag{11}$

그림 4 분리된 절점(요소)간의 연결조건 정의

유량의 연속성과 에너지 보존을 따르는 유동의 기본 연결조건에 **표 1** 의 속성을 부여하게 되면 다양한 네트워크 구성요소를 모사할 수 있습니다.

여격조거	인려	저요반번	관련 구성요
Cerc		7008	소
고정 유	÷	$A u = \dot{V} A u = \dot{V}$	퍼고
량	V	$A_I u_I - v$, $A_J u_Jv$	
유량 공	1Ż	$Au + Au + Au\dot{V}$	
급	V	$A_1u_1 + A_2u_2 + A_3u_3v$	
고정 손	47	$p_{I}^{\mathrm{total}} - p_{J}^{\mathrm{total}} = \Delta \overline{p}_{\mathrm{total}}$	밸브, 구성장
실	$\Delta P_{\rm total}$	$\stackrel{\text{\tiny LL}}{=} p_J^{\text{total}} - p_I^{\text{total}} = \Delta \overline{p}_{\text{total}}$	비
고정 승	$\overline{\Lambda \overline{p}}$	$p^{\text{total}} = p^{\text{total}} = A\overline{p}$	퍼고
압	$\Delta \mathcal{P}_{\text{total}}$	$p_J - p_I - \Delta p_{\text{total}}$	
고정 압	\overline{p}_I 또는		ᆧᆸ
력	\overline{P}_J	$p_I - p_I + c p_J - p_J$	2—
		$p_1^{\text{total}} - p_J^{\text{total}} = K_1^J \frac{\rho u^2}{2}$	
부손실	K_1^J	$EE _ ntotal ntotal V \rho u^2$	피팅
		$\pm \pm p_J - p_1 = \kappa_1 - \frac{1}{2}$	

표 1 유동해석을 위한 1차원 요소 연결조건

• 해석조건의 설정

1 차원 네트워크를 이용한 유동해석은 압축성/비압축성 유동 조건을 모두 고려할 수 있으며, 재료의 정의 방법 역시 3 차원 요소망을 이용한 유동해석과 동일합니다. 단, 밀도를 미지수로 하는 압축성 유동해석 알고리즘은 사용할 수 없습니다. 일반 유동해석 경계조건으로는 입구단 속도, 입구단 질량유량, 입구단 압력, 출구단 압력 및 압력 고정과 같이 3 차원 요소망을 이용한 유동해석 경계조건과 동일한 조건들을 사용할 수 있으며, 1 차원 요소의 특수 조건으로서 유체용기(reservoir) 조건이 있습니다. 유체용기 조건은 유체가 공급되거나 배출되는 곳에 위치하는 압력조건이며, 유입되거나 배출되는 상태에 따라 입구단 압력 또는 출구단 압력과 동일한 방법으로 해석에 적용됩니다. 이 때, 고정압력 p_c 는 **그림 5** 와 같이 표면압력과 액면높이(liquid level)에 의해 결정됩니다.

$$p_c = p_{surface} + \rho gh$$
 (12)
 $p_{surface}$: 표면압력
 g : 중력가속도
 h : 액면높이

그림 5 유입/배출되는 유체용기와 압력 경계조건

열유동해석 경계조건으로는 발열, 고정 온도, 열유속 및 반응성 열유속과 같이 3 차원 요소망을 이용한 열유동해석 경계조건과 동일한 조건들을 사용할 수 있으며, 열유속의 경우 단면의 둘레길이를 통해 파이프 표면에 가해지는 열하중임에 주의해야 합니다.

• 3 차원 요소망과 상호작용

 T_i \overline{p}

채널 네크워크를 모델링하여 복잡하게 연결되어 있는 1 차원 유동장을 해석하는 방법은 계산 시간에 있어서 매우 효율적인 방법이지만, 부분적으로는 상세한 3 차원 유동현상이 반드시 필요한 경우도 있습니다. midas NFX CFD 에서는 1 차원 유동 네트워크와 3 차원 요소망 간의 상호작용을 위해 유동 커플링(flow coupling)과 열교환(heat exchange) 조건을 제공합니다. 유동 커플링은 **그림 6** 와 같이 3 차원 유동 영역 표면과 1 차원 요소의 절점간에 질량보존, 압력조건 및 온도조건을 상호 부여함으로써 열유동의 연속성을 유지토록 하는 조건입니다. 유동 커플링을 정의할 때에는 유동의 흐름을 가정해야 하며, 이에 따라 해석에 적용되는 경계조건이 달라집니다. 예를 들어, 유동이 3 차원 영역으로부터 1 차원 요소를 향하는 것으로 설정하였다면 다음과 같은 경계조건이 적용됩니다.

	$\rho A u_1 = \dot{m}, \ p_i = p_1, \ T_1 = \overline{T}$	(13)
u_1, p_1, T_1	:1차원 요소(절점)의 속도, 압력, 온도	
ṁ	:3차원 영역 표면을 지나는 질량유량	
p_i	:3차원 영역 표면 절점의 압력	
\overline{T}	:3차원 영역 표면 평균온도	

한편, 유동이 1 차원 요소로부터 3 차원 영역으로 흐른다고 가정하였다면 다음과 같은 경계조건이 적용됩니다.

그림 6 유동 커플링

열교환 조건은 **그림 7**과 같이 3 차원 유체/고체 영역과 1 차원 요소의 표면간에 발생하는 열전달 현상을 모사합니다. 열전달계수(heat transfer coefficient)가 주어지면, 3 차원 영역 내부에 위치한 1 차원 네트워크 절점으로부터 3 차원 영역으로 전달되는 열전달율(heat flow rate)은 다음과 같습니다.

$$q = \pi D_h Lh(T_1 - N_i(\boldsymbol{\xi}_1)T_i) \tag{15}$$

h	: 열전달계수
q	: 열전달율
T_1	:1차원 요소(절점)의 온도
ξı	:1차원 네트워크 절점 위치의 3차원 요소 자연 좌표(natural
	coordinate)
N T	2 1 이 이 사이 청사하스 저저이트

N_i, T_i : 3 차원 요소의 형상함수, 절점온도

그림 7 유체/고체 영역과 1차원 요소간의 열교환 조건

열교환은 1 차원 네트워크 절점에서 이루어지기 때문에, 3 차원 요소망에 비해 1 차원 요소망이 충분히 조밀하지 않다면 결과의 불연속성이 심하게 발생할 수 있습니다. 한편, 열교환 조건을 계산하기 위해 1 차원 네트워크 절점이 3 차원 영역의 어느 요소 내부에 존재하는지를 검색해야 하므로, 1 차원 요소망이 불필요하게 조밀하다면 계산 효율이 떨어지게 됨에 주의해야 합니다.

4. Technology 사용

4-1. 예제 설명

예제는 웨이퍼 챔버 3 개를 포함한 관 유동 시스템에 대한 해석으로, 1 차원 유동 네트워크의 2 점 및 다절점 경계조건과 더불어 1D-3D 유동 커플링 기능을 이용한 해석이 필요하며 모델의 형상과 조건은 다음 **그림 8** 과 같습니다.

그림 8 1차원 유동 네트워크 기능의 이용을 위한 3-챔버 예제

1 차원 요소로 모델링할 관에 입구단 속도조건으로 유입된 질소는 3 개의 챔버에 나누어져 공급되며, 웨이퍼를 지나 빠져나온 질소가 다시 관을 통해 출구단으로 빠져나갑니다.

해석 목적은 다음과 같습니다. - 관에 의한 유동 분절 및 챔버 내부 유동 분석

해석조건은 다음과 같습니다.

- 질소 밀도 : 1.14kg/m³
- 질소 점성 : 1.8×10⁻⁵kg/m·s
- 입구단 속도 : 3.183m/sec
- 출구단 압력 : 0 Pa
- 벽면 무차원벽면거리 : 65
- 관 단면 : 원, 직경 0.02m
- 관 거칠기(roughness) : 5.0×10⁻⁵m

본 예제는 정기교육을 이수하신 분을 기준으로 작성되었습니다.

_____LPM(Liter per minute)은 대표적 인 부피 유량 조건 중 하나이며, 단면이 직경 20 mm인 원이므로 이를 유체의 속도로 환산하면 3.183 m/sec 입니다.

3

2

Elbow와 Tee 접합부(junction) 관의 경우 이에 대해 이미 알려 진 손실 계수(loss coefficient)가 있으나, 관의 꺾인 각도, 꺾인 곡률(curvature) 및 관의 연결 형 태에 따라 서로 다른 손실계수 를 적용하게 됩니다. 본 예제에 서는, 사용된 관은 플랜지 형태 로 접합된 것(flanged pipe)으로, 직각 형태의 경우 경로가 급격 히 변하는 곡률을 가정하였습니 다.

4-2.예제 따라하기

4-2-1. 해석조건 설정

1) 상단 메뉴의 "새로 만들기"를 클릭합니다.
 2) "3 차원/일반모델"을 선택합니다.
 3) "단위계"를 N-m-J-sec 로 설정합니다.
 4) "확인"을 클릭합니다.

"도구"리본메뉴 > "옵션" 버튼을 이용하여 정의할 수 있는 옵션 설정은 일반유동 교육 시 학습 했던 내용과 동일하게 진행하면 됩니다.

4-2-2. 기하형상 제작

1) "형상" 탭 > "불러오기"를 클릭합니다.

2) 배포된 "tech note cad 1 차원유동네트워크.X_T" 파일을 선택합니다.

3) "열기"를 클릭합니다.

4) 작업화면에서 마우스 우클릭 후 "모든 가이더 감추기"를 선택합니다(선택 사항입니다. "모든 가이더 보이기"를 통해 복원이 가능합니다).

0 🗅 🗁 🥵 🖨 🖆 🐄 🛥	r = = =			midas NFX - [NFXD1]	5		- ¤ ×
행상 요소망 구:	조 정적해석 구조	동작해석 유동하	해석 해석 결과분석 도구			사용모드 * :	스타일 *배경 *언어 * 🎯 = 🗗 🗙
मित्र कि स्विष्ठ के स्व		्रा म् म्		म्ड म्ह ਸ_ड ਸ_ड <th>🚱 🚺 🏹 🕹 3상검사 간략화 자동 위 연결</th> <th>2 09 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th></th>	🚱 🚺 🏹 🕹 3상검사 간략화 자동 위 연결	2 09 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
CAD파일	🚺 CAD파일 불러	오기				3	×
S S . Q G Q Q	찾는 위치(I)	: 🛅 CFD테크노트	- 1차원유동네트워크	🖂 🧿 🤌 🖾 🔹			# 🌒 . 🔀 🔩 🐂 🕺
모열	\sim	이름	^	수정한 날짜	유형	크기	2 1 2 1 2
항목 변		tech note cad	1 1차원유동네트워크.X_T	2024-07-08 오천 10:00	X_T 파일	161KB	ne i
⊕ [@ 재료		2					
由州國 특성 由.☑ ❤️ 기하형상	비타 81명						
● ☑ ● 요소망							
⊕-▲ 입육 효-₩ 기타	2101112121						8888
	4 PC	THOLOU BUDD		7		3	
	2	파일 여름(N): 파일 형신(T):	Recir Hole cau 1자원유용내도위	⊇			
	네트워크	ME 8 4(1)	□ 읽기 전용으로 열기(R)	-, officient, output, officiently			z
모델 하즇/경계 해석 및 결과							
속성장	· 평상수정		접촉면찾기	현재모멸의 해석?	정보 유지하기	05 HILL T.N.	Т 🔨 х
▷ 일반	U 월양경덕		🗐 오차자동계산 0.000	I 3세 페 기보자루	0 or 0 24	집에먹으면	
	회산수정 수주	레벨 (보토)	0	60 AL 9-			Þ
			대상모델의 길이단위 n	m v	불러오기옵션	모두초기화	* # X
	>	MOAS INFX 2024K1 (C	04D/C)				
	>	Copyright (C) SINCE 라이선스가 인증되었습	2007 MIDAS Information Technolo 니다.	igy Co., Ltd. ALL RIGHTS RESE	ERVED.		
	> -	유지보수 기간이 168일	일 남았습니다.				
5						N	

4-2-3. 재료·특성 정의

- 1) "요소망" 탭 > "재료"를 클릭합니다.
- 2) ▼ 버튼을 클릭 후, "유체(유동해석)"을 선택합니다.
- 3) 데이터베이스에 등록된 "NITROGEN_25℃"를 클릭합니다.
- 4) "확인" 클릭합니다.
- 5) "닫기" 클릭합니다.

0 🗅 😂 😂 🖯 🗂 🖘 🛎 🐡 🛎 🤋	midas NFX - [NFXD 1]	- 🗆 ×
형상 요소망 구조 정적해석	구조 동작하석 유동하석 하석 결과분석 도구 사용모드 *	스타일 *배경 * 언어 * 🥹 = 🗗 ×
사람 사람 사람 사람 사람 사람 비용 비용	····································	변도수정 요소측정 활상연절 테이블 도구
	- 上上 ■■■■■ + → ↑ ↓ ┖ ↗ 15 ~ ♡・◎・♡ & ◎ . ! □ ◎ ◎ □ . ! 曲々はは 増目	¼ # @ . : 😝 🔍 ₩. •n 🔅
재료 추가/수정	×	12 12 12
번호 0금 목류 1 Aloy Steel 동방성-선1 모호 이중/경계 에서 및 결과 응상 등 + 주 ×	상성 (2) 동방성 (2) 동방성 (2) 유지(유동해석) (2) 고지(유동해석) (2) 관계 (3)	ζ × ×
	4 🚯 NFXD1 x	Þ
	훌력장	* # ×
	> mass inv. zuzekti (HOND), Copyright (C)SNEC 2007 MIDAS Information Technology Co., Ltd. ALL RIGHTS RESERVED. > 확여선수가 연물입었습니다. > 치작성상 물러오기를 한트라졌습니다. [tech note cad 1차원유동네트워크.X_T]	

번호 2	이름 NITROGEN_25°C-1	색상			
al.	< 유체 (유동해석)				
RESH WATER 0°C	유동				
RESH_WATER_25°C	모델	비압축성			~
RESH_WATER	질량밀도	1.138	kg/m³	없음	~
IR_0'C	일반화된 뉴턴 유체	-	1000 C		
IR_25°C IR_50°C	● 점성	1.663e-05	kg/(m·sec)	없음	~
R KYCEN DE'C				상세적인	
ELIUM 25°C				0.00	
TROGEN_25°C ARBON_MONOXIDE_25°C	물질량	0.02801	kg/mol	없음	×
ARBON_DIOXIDE_25°C	표면장력	0	N/m	없음	~
RGON_25°C	압축률	0	sec2/m2	없음	~
HLORINE_25°C					
	- 가속도장				
MMONIA_VAPOR_25°C	Tx	0	m/sec ²	없음	×
ETHANE_25°C	Ту	0	m/sec ²	없음	~
CETYLENE_25 C THANE_25 C	Tz	0	m/sec ²	없음	~
ROPANE_25°C ROPYLENE_25°C	G				
HYLENE_25°C	2	1022	1/0(771)	20	
	미코	1036	J/(kg.[i])		
ASOIL_VAPOR_25°C ESEL_LIOUID	전도율	0.0242	W/(m·[T])	없음	~
	부유도	0		없음	~
	열원	0	W/m³	없음	~
HYLENE_GLYCOL	물질 이송				
ENZENE_LIQUID ENZENE_VAPOR_25°C	확산계수	0	m²/sec	없음	~
ERCURY DLUENE_LIQUID	**	0	1/sec	없음	~
DLUENE_VAPOR_25°C	1.000	-	- A		
LANE_25°C	복사	3)		(market)	
CTAFLUOROCYCLOBUTANE_25°C	흡수계수		1/m	없음	~
TROGEN_TRIFLUORIDE_25°C	산란계수	0	1/m	없음	×
	산란 위상함수			동방성	~
	굴절률	0			
	-				

특성을 입력할 때, 본 예제에서는 같은 질소 재료를 이용하여 다른 두 개의 특성을 생성하는 것이 필요합니다. 챔버 내부 요소망 생성에 사용할 3D 특성과, 관내 유동을 위한 요소망 생성에 사용할 1D 특성을 생성하여야 합니다. 우선 3D 특성을 생성하겠습니다.

1) "요소망" 탭 > "특성"을 클릭합니다.
 2) ▼ 버튼 클릭 후, "3D..."을 선택합니다.
 3) "3D 유동해석" 탭을 선택합니다.
 4) 이름에 "질소_3D"를 입력합니다.
 5) 재료를 "NITROGEN_25℃"로 선택합니다.
 6) "확인"을 클릭합니다.

0 D D D D D D D D D D D D D D D D D D D			midas NFX - INFXD11	- 🗆 ×
· 형상 요소망 구조 정적해석	구조 동적해석 유동해석 해석	결과분석 도구		사용모드 '스타일 '배경 '언어 ' 🙆 - 🗗 '
NFX Nastran ABAQUS 제료 지료/특성 FE 모일 재료/특성	전 시드레이 시드메칭 레이어 ID 요소 생성제이	20 30 71EF	재생성 이동/복사 원정 결정(요소 수정 · · · · · · · · · · · · · · · · · · ·	다. 다
📑 🔓 💩 . 🔍 🖼 🗟 d C C +	888888 44	< → ↑ ↓ < 7 15 <	🖓 • 🕸 • 🎯 🕼 🖉 🔒 💷 .	. 🏢 👉 🍱 💯 📲 📲 💭 . 🔯 🔩 🖎 🖣
특성 추가/수정	×	1월 🖏 🖉 - 기본	- 모든 기하형상 (P) → 1 1 1 1 1 = =	
[번호 이용 즉류 하위 1 월수_30 30 30 위 으면 하문/경계 태석 및 결과 수성장 ← 0 × > 일반	## ## 2 \$884 10 20 30 20 30 718 ###271 2 \$27 \$27 \$27			
	출력장			* # ×
	> midas NFX 2024R1 (64bit) > copyright (C) SINCE 2007 MIDAS 의 이선스가 인증되었습니다, > 유지보수 기간이 168일 남았습니다, > 기하평상 클러오기를 완료하였습니다	Information Technology Co., Ltr . [tech note cad 1자원유동네트유	d. ALL RIGHTS RESERVED.	

리드 복합재료 솔리크	E 3D 유동해석 3 불 유동해석
<u>'호 1 이름</u>	
재료	2: NITROGEN_25°C V
재료좌표계	전체직교좌표계 🗸
이동참조 프레임	
	상세정의
다공성 매질	
	상세정의
인쇄회로기판	
	상세정의
☐ 복사매질	
🗌 고정온도	0 [7]
□ 중첩요소망	☐ 층류영역

다음으로, 1D 요소망 생성을 위한 1D 특성을 생성하겠습니다.

- "요소망"탭 > "특성"버튼을 클릭합니다.
 "생성" 옆 ▼ 버튼 > "1D..."을 클릭합니다.
 "CFD 1D"탭을 클릭합니다.
 "이름"에 "질소_1D"를 입력합니다.
 "재료"를 "NITROGEN_25℃"로 선택합니다.
 "단면..." 왼쪽 체크박스를 클릭하고, "단면..."을 클릭합니다.
 "DIM1"에 "0.01"m 을 입력합니다.
- 8) "확인"을 클릭합니다.
- 9) 1 차원 특성 생성/변경 창의 "확인"을 클릭합니다.
- 10) 특성 추가/수정 창의 "닫기"를 클릭합니다.

테이퍼 기능을 이용하면 단면이 점점 넓어지는 확관 또는 좁아 지는 축관에 대한 설정이 가능 합니다. 또한, 거칠기와 미소 손 실계수의 설정을 통해 관의 재 질에 따른 내벽 효과 역시 고려 할 수 있습니다.

4-2-4. 요소망 생성

3D 와 1D 특성을 이용하여 별도로 요소망을 생성합니다. 우선, 관 연결 돌출부의 솔리드에 3D 요소망이 밀집되어야 하므로 해당 부분의 요소망 크기를 제어합니다.

1) "요소망"탭 > "시드제어"를 클릭합니다.
 2) 관 연결 돌출부 선 72 개를 선택합니다. (그림의 사각 박스 총 6개)
 3) "분할 크기"에 "0.003" m 을 입력합니다.
 4) "확인"을 클릭합니다.

3D 요소망을 생성합니다.

1) "요소망" 탭 > "3D"를 클릭합니다.
 2) 챔버 기하형상(솔리드) 3 개를 선택합니다.

- 3) "크기"에 "0.01"를 입력합니다.
- 4) "특성"을 "질소_3D"로 선택합니다.
- 5) "확인"을 클릭합니다.

2번에 해당하는 선 선택을 드 래그(drag)로 할 때 후면 엣 지(edge)가 동시에 선택되는 경우가 있으므로 주의하여야 합니다. (선택되는 개수가 캡 쳐 화면의 사각 박스 하나당 12개가 증가하는 것을 확인 합니다.)

다음으로, 1D 요소망을 생성합니다.

"요소망" 탭 > "1D"를 클릭합니다.
 관 기하형상(선) 12 개를 선택합니다.
 "요소 크기설정"을 "크기"로 하고 값을 "0.01"로 입력합니다.
 참조 방향 버튼을 클릭합니다.
 "직접 입력"에 "0, 1, 0"을 입력하고, "확인"을 클릭합니다.
 "특성"을 "질소_1D"로 선택합니다.
 "요소망세트" 이름을 "질소_1D"으로 입력합니다.
 고급 옵션 버튼 ">>"를 클릭합니다.
 "절점병합"을 체크 해제하고 4 "확인"을 클릭합니다.
 "확인"을 클릭합니다.

4

1차원 유동과 3차원 유동의 커 플링(coupling)은 절점병합을 통 해 이루어지는 것이 아니라 경 계조건을 부여함으로써 이루어 집니다. 따라서 3차원 요소망과 의 절점병합을 방지하기 위해 체크를 해제합니다.

2번에 해당하는 선 선택을 드래 그(drag)로 하면 챔버의 앳지 (edge)까지 선택될 수 있으므로, 캡쳐 화면 기준 왼쪽 "모델" 창 에서 시프트/컨트롤 키를 이용 하여 중복선택을 할 수 있습니 다. 또는 작업창 왼쪽 화면의 " 교차선택"기능을 이용할 수도 있습니다.

요소망 생성(선)	×							
자동-선								
12개 대상 선택됨 요소 크기섬적								
● 크기 ○ 분할수 0.0	13 4	ŀ향 (요소 ¥축)		>	<			
방향 (요소 γ축)		○ 참조 절점	2	절점 선택				
월프 영양 (GCS): (0, 1, 0)		● 참조 방향 (GCS)			고급	옵션		
특성 2 2: 질소_1D	~ 6	○ 🖾 □ 반대 방향	방향 선택	5	-UI 			ie-07
요소망세트 질소_1D 7		● 직접입력		0,1,0	□독	립적인 요소망세트	에 등록	
🐺 🖉 📫 💐 확인 취소 📑	48 >>		5 📼	인 취소		9	확인	취소
10	8							

※ "1D 요소와 참조좌표계가 평행합니다." 라는 메시지 창이 출력되는 경우, 위 창의 "방향(요소 Y축)"에 해당하는 참조 방향이 잘못 설정되어 있는 경우입니다.1D 요소망 생성시 이 참조 방향은 생성될 1D 선 요소망의 방향과 일치하면 안 됩니다. 예를 들어 본 예제의 경우 참조 방향의 우측 버튼을 클릭하여 참조 방향을 0, 1, 0 으로 변경하면 됩니다.

"모델"창의 "기하형상", "요소망" 트리 체크박스를 선택/해제하여 기하형상 및 요소망을 보이기/ 감추기 할 수 있습니다. 해당 페 이지와 같이 면(또는 솔리드, 선, 점...)을 선택하는 경우는 기하형 상만 보이도록 하고, 다음 페이 지와 같이 요소(또는 절점, 자유 면 요소...)를 선택하는 경우 요 소망만 보이도록 하는 것이 좋 습니다.

2번 항목을 수행하는 경우 모든 면을 선택한 후 관과 연결되어 있는 6개의 면을 클릭하여 선택 해제를 하면 쉽게 선택됩니다.

5

"무차원벽면거리적용" 옵션을 통 해 벽면에 벽 법칙을 적용할 수 있습니다. 벽 법칙을 적용하면 점성바닥층에 대한 계산을 효율 적으로 할 수 있습니다. 점성바 닥층은 벽면에 가까운 아주 얕 은 영역으로 난류의 영향보다 점성의 영향이 지배적인 영역입 니다. 이 영역의 계산을 위해서 는 해당 영역에 매우 조밀한 요 소망이 필요하지만, 벽 법칙을 적용하면 해당 영역에 대해 요 소망에 의한 수치해석 대신 조 밀한 요소망 없이 함수에 의해 값을 구할 수 있습니다. 벽 법칙 은 난류 경계층을 계산하는 기 법과 이론적으로는 독립적이지 만, 점착의 경우 벽면에 속도가 ○ 이 티어 스려서으 떠어뜨기다

4-2-5. 경계 조건 입력

1) "유동해석" 탭 > "벽면"을 클릭 후, "벽면"을 선택합니다.
 2) 대상형상의 "종류"를 "면"으로 선택합니다.
 3) 관과 연결된 면 6개를 제외한 챔버 솔리드의 면 132개를 선택합니다.
 4) "벽면 종류"를 "무차원거리벽면적용"으로, "벽면거리" 값을 "65"로 입력합니다.⁵
 5) "CFD 경계세트" 이름을 "3D 벽면"으로 입력합니다.

6) "확인"을 클릭합니다.

한먹면 한역한		
이름 면 벽면-	1	
대상형상		
종류 면		-(
13	2개 대상 선택됨	
벽면		
벽면 종류 4	무차원벽면거리적	(v
벽면거리	65	
파티 <mark>클 벽면 종류</mark>	없음	×
· 벽면이동효과 ?	역용	
조건선택 없	8	曲
· · · · · · · · · · · · · · · · · · ·		
11末71	60 [dea] 212	

MIDAS

- 1) "유동해석" 탭 > "1D 배관"을 클릭한 후, "입구단"을 선택합니다.
- 2) 대상형상의 "종류"를 "점"으로 선택합니다.
- 3) 입구단에 해당하는 점 1개를 선택합니다. 4) "속도"에 3.183 (m/sec)를 입력합니다.
- 5) "CFD 경계세트" 이름을 "1D 입구단"으로 입력합니다.
- 6) "확인"을 클릭합니다.

- 1) "유동해석" 탭 > "1D 배관"을 클릭한 후, "출구단"을 선택합니다.
- 2) 대상형상의 "종류"를 "점"으로 선택합니다.
- 3) 출구단에 해당하는 점 1개를 선택합니다.
- 4) "압력"에 0 (N/m²)을 입력합니다.
- 5) "CFD 경계세트" 이름을 "1D 출구단"으로 입력합니다.
- 6) "확인"을 클릭합니다.

입구단 1	출구단	유체용기		
이름	1D 출	구단-1		
대상형	상			
종류	점			~ (
		1개 대상 선	택됨	
안력				
P		0 N/m ²	없음	~
9# A	19 12 C	4		
0.		0 [71]	0.0	
		0 [1]	9.9 1	
		-		
	-			1

 1) "유동해석" 탭 > "1D 배관" 클릭 후, "다절점 연결"을 선택합니다.
 2) "참조"요소로 T 형 분절점에 위치한 요소 중 입구 또는 출구 방향 요소를 선택합니다.
 3) "분기" 요소 선택 버튼을 클릭합니다.
 4) 선택한 참조요소와 수직 방향의 T 형 분절점 요소를 선택합니다.
 5) "계수"에 "1"을 입력하고 "추가"를 클릭합니다.⁶
 6) "분기" 요소 선택 버튼을 더블클릭합니다.
 7) 선택한 참조요소와 동일한 방향의 관 분절점 요소를 선택합니다.
 8) "계수"에 "0.2"를 입력하고 "추가"를 클릭합니다.⁶
 9) "CFD 경계세트" 이름에 "1D 다절점"을 입력합니다.
 10) "확인"을 클릭합니다.

※ T 형 분절점 4개에 대해 동일한 작업을 수행합니다.

6

"2. Technology 배경"에서 상기 한 손실 계수를 해당 페이지에 서 입력합니다. 플랜지 형태로 접합된 관을 가정하였고, 손실 계수는 다음과 같습니다.

Flanged, $K_L = 0.2$ Threaded, $K_L = 0.9$

이름	다절점 연결-1		이름	다절점 연결-1	
손실계	수(1&J사이)	~	손실기	비수(1&J 사이)	~
참조			참조		
	요소 [569936	5] 선택됨	9 🗹	요소 [56993	6] 선택됨
분기	11 (Marcol 1 (2007)		- 분기		
	1개 대상			1개 대상	선택됨
계수	5	1 추가 삭제	계수	8 0.	2 추가 삭제
1	요소	계수	A	요소	계수
1	569686	1,0000	1	569686	1.0000
+			2	569800	0.2000

- 1) "유동해석" 탭 > "1D 배관"을 클릭한 후, "다절점 연결"을 선택합니다.
 2) "참조"요소로 엘보우(elbow)형 분절점에 위치한 요소 중 입구 또는 출구 방향 요소를 선택합니다.
 3) "분기" 요소 선택 버튼을 클릭합니다.
- 4) 선택한 참조요소와 수직 방향의 엘보우형 분절점 요소를 선택합니다.
- 5) "계수"에 "0.3"을 입력하고 "추가"를 클릭합니다.
- 6) "CFD 경계세트" 이름에 "1D 다절점"을 선택합니다.
- 7) "확인"을 클릭합니다.

※ 엘보우형 분절점 2개에 대해 동일한 작업을 수행합니다.

() C Co () C C	- 🗆 ×
№ 형상 요소망 구조 정적해석 구조 동작해석 유통해석 해석 결과분석 도구 사용모드 스타일 * 배	
	경 * 언어 * 🥹 🗕 🗗 🗙
응답 ····································	
●	. 🔀 🔤 🗠 🦷
	윓
98 97 92 92 94 98 97 92 92 92 98 97 92 92 92 98 97 92 92 92 98 97 1022 10 1022 98 97 1022 10 1022 98 97 1022 10 1022 98 97 1022 10 1022 98 98 10 1022 10 98 97 1022 10 1022 98 98 10 1022 10 98 98 10 1022 10 98 98 10 1022 10 98 98 10 1022 10 98 98 10 1022 10 98 98 10 1022 10 98 98 10 1022 10 98 98 10 1022 10 98 98 10 1022 10 98 98 10 1022 10 98 10 1022 10 1022	
4938 v 7 X	
· 요소 속성	
황경 가수 2 4 이 / FD 1 / 이 NEX01 x 4 이 NEX01 x	Þ
출력정	₩ ₽ ×
> mdxs HFX 200421 (6Hx) > copyright (C) SINGE 2007 MIDAS Information Technology Co., Ltd. ALL RIGHTS RESERVED. > 러이슈스가 (2014) 1008 보았습니다. > 취직도수 기간이 1008 보았습니다. > 111406 1918 클럽 500402 가입 요소가 생성되었습니다. > [지독도요도입기) 초도형체력(클럽 40개, 효소 347가)가 성성되었습니다. > [제독도 10] 초도형체력(클럽 44개, 효소 347가)가 성성되었습니다.	

이름 다절점 연결-5 종류 순입계수(1 & J 사이)	점다	절점			
종류 손실계수(1 & J 사이) 참조 요소 [569711] 선택됨 분기 1개 대상 선택됨 계수 0.3 추가 5 4 요소 계수 14 14 171 대상 선택됨 14 14 14 14 14 14 14 14 14 14	이름	다절점 연결-	5		
손 쉽계수(1 & J 사이) ✓ 참조 로소 [569711] 선택됨 분기 관계 1개 대상 선택됨 계수 0.3 추가 5 ▲ 요소 계수 +	종류				
상조 요소 [569711] 선택됨 분기 기개 대상 선택됨 계수 0.3 추가 5 요소 계수	손실계~	┝(1&)사이)		~	
요소 [569711] 선택됨 분기 1개 대상 선택됨 계수 0.3 추가 5 유소 계수 +	참조				
분기 ····································		요소 [56	9711] 선택	8	2
월 1개 대상 선택됨 계수 0.3 추가 4 요소 계수 +	三月71				
제수 0.3 추가 5 A 요소 제수		1개 더	상 선택됨	_	1
94 0.3 \$71 5 94 94 7 +	계스				
A 요소 계수 · · · · · · · · · · · · · · · · · ·	~11 -		0.3 수		
+	- 1	요소	1 7	11¢	
	+				
	+	요소		11수	
	경계세트	1D다절점		~	
) 경계세트	ID다절점		. ~	

7 "2. Technology 배경"에서 상기 한 손실 계수를 해당 페이지에 서 입력합니다. 플랜지 형태로 접합된 관을 가정하였고, 손실 계수는 다음과 같습니다.

챔버의 면과 관의 절점을 선택해야 하므로, 챔버 기 하형상과 관의 요소망을 보 이게 하고, 관의 기하형상 과 챔버의 요소망을 감추어 놓는 것이 좋습니다.

- 모델 창에서 "질소_1D" 요소망만 활성화합니다.
 "유동해석" 탭 > "1D 배관" 클릭 후, "유체 커플링"을 선택합니다.
- 3) 대상형상의 "종류"를 "면"으로 선택합니다.
- 4) 챔버의 관 접촉부 면 1개를 선택합니다.
- 5) "커플링 절점"을 선택 버튼을 클릭합니다.
- 6) 관 절점 중에서 해당 면과 커플링할 절점을 선택합니다.
- 7) 입구에서 챔버로 들어가는 부분(3개)은 "1D 요소 바깥으로"를 선택하고, 챔버에서
- 출구로 들어가는 부분(3개)은 "1D 요소 안으로"를 선택합니다.
- 8) "CFD 경계세트" 이름을 "1D-3D 커플링"으로 입력합니다.

9) "확인"을 클릭합니다.

유동커플링 X	
선커플링 면커플링	
이름 면유동커플링-1 대상형상	
종류 면 33	
1D 요소 커플링 절점	
· 1D 요소 안으로 ● 1D 요소 바깥으로	Z
CFD 경계세트 링1D-30커플 - 8	××
정 영 확인 취소 적용	•

※ "흐름방향"의 선택에 유의하면서 1D-3D 커플링할 부분 6개에 대해 동일한 작업을 수행합니다.

4-2-6. 해석 케이스 정의

- 1) "해석" 탭 > "단일해석"을 클릭합니다.
- 2) "이름"에 "case1"을 입력합니다.
- 3) "해석 종류"는 "정상상태 유동해석"을 선택합니다.ª
- 4) "해석 제어"를 클릭합니다.
- 5) "시간스텝개수"에 500을 입력합니다.
- 6) "확인"을 클릭합니다.

7) "확인"을 클릭합니다.

정상상태에서 시간간격은 컴퓨 터가 자동으로 계산을 해줍니다. 따라서 시간스텝개수만 입력하 면 됩니다. 시간스텝개수는 충분 히 입력을 해주면 되는데 그 이 유는 "4-2-7절" 에서 설명할 수 렴 조건을 만족하면 시간스텝개 수에서 입력한 값만큼 해석이 진행되지 않더라도, 해석을 중지 시키고 결과를 볼 수 있기 때문 입니다.

매 스텝마다 결과를 저장할 경 우 저장 파일의 크기가 과도해 집니다.

midas NFX CFD 에서는 일반적 으로 2차식 k-ε 모델을 난류모델 로 사용합니다.

8

"정상상태 유동해석"은, 시간에 따른 유동 변화보다는 최종적으 로 수렴한 상태의 유동 상태를 확인하고 싶을 때 사용됩니다.

🗹 일반유동				난류 모델	2차	Ψk-ε		
열전달					고급 년	날류 옵션		
- 고제열전달	고그 모두							
				□ 참조압력	력 설정		0, 0, 0 m	
만목계산				□ 정수안	섬전			
시간간격	0,1	sec			20 74 8			
치대바람회소	500	5			78			
의대한국 첫구	3	요소망변형						
우님기꾼/오사	0	() 벽면이용	동종속 ()사용지	정의필드 종속	O 모두 3	역용		
이 시간 될지 선행	비재지역			사용사 영	0 m	었음	0	KEP
[_] 유동-이류 문발애적	우립기꾼(오사		0.001	11	0	01 <u>0</u>		KED
결과출력				12	m	8.8		LCED.
·····································	생성			자유수면레 직량보조	별			
물리적 데이터				해제	이적용 이 즉	분 고정	0 kg	/sec
작동압력 101325 N/m ²				2019 4명도				
중력 벡터	0, 0, -1			8420	19T			1.00
대칭 평면								
🗍 평면23 X-위치		0	m	- 열전달해석				
🗍 평면31 Y-위치		0	m	[] 압력과	섬성 에너지 적용			
🗌 평면12 Z-위치		0	m	열전효3	과 적용			
L	내부 반복 <mark>계</mark> 산 정의				파티	를 해석		
	초기 조건,							

4-2-7. 계산 실행

계산이 진행되는 동안 해석자가 원하는 위치의 원하는 물리량을 실시간 모니터링 할 수 있으며, 이는 해석의 수렴성을 판단하는 데 도움을 줍니다. 결과 모니터링 포인트를 생성합니다.

1) "해석" 탭 > "모니터링"을 클릭합니다.
 2) 1D 배관의 입구단 절점 1 개를 선택합니다.
 3) "결과 종류"로 "압력"을 선택합니다.
 4) "이름"에 "입구단_압력"으로 입력하고 "적용"을 클릭합니다.
 5) 1D 배관의 출구단 절점 1 개를 선택합니다.
 6) "결과 종류"로 "총 속도"를 선택합니다.
 7) "이름"에 "출구단_총속도"를 입력하고 "확인"을 클릭합니다.

입구단은 속도조건, 출구단은 압 력조건을 주었기 때문에, 입구단 절점의 속도와 출구단 절점의 압력은 항상 고정되어 있으므로 이를 모니터링 포인트로 하는 것은 의미가 없습니다. 이러한 이유로 입구단의 압력, 출구단의 속도를 모니터링 물리량으로 설 정한 것입니다.

모든 준비가 끝났으면 해석을 실행합니다.

1)"해석" 탭 > "실행"을 클릭합니다.

2) 해석케이스가 활성화되었는지 확인 후 "확인"을 클릭합니다.

0 D 🗠 🖉 🖯 🖆 🖬 🖘 🖘 🖘 🖘		midas NFX - [NFXD1] - 🗆 🗵
한 정상 묘소망 구조 정적해석	구조 동적해석 유동해석 해석 결과분석 도구	사용모드 : 스타일 : 배경 : 언어 : 🛞 🗕 🗗 🗙
ि स्थित करे हे सि है सि	표 · · · · · · · · · · · · · · · · · · ·	
해석케이스 정의 해석율선 정의	1) 해석 도구	
S = = = = = = = = = = = = = = = = = = =	∃↓↓ ₽₿₿₿₽₽₽ ← → ↑ ↓ ⊼ ↗ 15	▽♡・◎・♡②◎、□◎□、Ⅲ+2.29 / 19 · 10 · 10 · 10 · 10 · 10 · 10 · 10 ·
모말 · · · · · · · · · · · · · · · · · · ·	0 00HI 0.000 원 17년 midas NFX 울버 ▲ 이동 3 오 case 1 중상상태	
p S2만	● NFX01 × 물력용 > midas NFX 2024R1 (64bR) > Copyright (C) SINCE 2007 MIDAS Information Technology Co., I 2 하인요소가 문항으느다. > 취직보수 기간이 160월 남았습니다. > 111408 기료 물급 > 560022 개요 소소가 삼年있었습니다.	td. ALL RIGHTS RESERVED.

계산이 시작되면 두 가지를 관찰해야 합니다. 첫 번째는 Norm 그래프이고, 두 번째는 관심영역에 대한 정보입니다. Norm 그래프를 통해 해가 지속적으로 수렴하는 지 확인해야 하며, 관심영역에 대한 속도나 압력 등에 대한 변화는 모니터링 포인트에서 확인할 수 있습니다. 먼저 아래 그림처럼 Norm 그래프의 값이 0.001 이하에 지속적으로 존재하는 것을 확인해야 합니다.

"도구"리본메뉴 > "보이기/감추 기"그룹박스 > "출력창"체크박스 를 활성화 하면 오른쪽 그림 우 측 하단 처럼 출력창이 생기게 됩니다. STEP 은 현재 스텝을 나 타내며, FLOW TIME 은 총 진행 시간 괄호 안 DT 는 정상상태일 때 컴퓨터가 자동 계산한 시간 간격을 나타내며, ITER 은 현 스 텝에서 총 반복 계산한 수를 보 여줍니다. 그리고 NORM 에서 VEL 값은 속도의 Norm 값을, PRES 는 압력의 Norm 값을 나 타냅니다. 추가적으로 "CONVERGED" 단어가 나타난 경우가 모든 Norm 이 0,001 이 하로 떨어져 해당 스텝에서 수 렴되었다는 것을 보여주는 것입 니다.

다음으로는 아래의 모니터링 포인트에서 확인하고자 하는 값이 정상상태에 도달했거나, 특정 주기를 가지는 것을 확인해야 합니다.

위 두 가지 조건이 모두 만족하면 "저장후 해석중지!" 버튼을 누르고 결과를 확인합니다.

4-2-8. 결과 검토

결과값은 요소망에 저장되어 있 으므로, 캡쳐 화면의 왼쪽 "모델 "창에서 기하형상을 감추고 요 소망을 보이게 해야 합니다. 요 소망을 일부만 보이게 함으로서 요소망 각각의 결과만을 볼 수 도 있습니다.

왼쪽 "해석 및 결과"창의 압력 값을 더블 클릭하면 압력 결과 가 태그(tag)됩니다.

비압축성이고, 단면의 면적이 일 정한 관 유동의 경우 분절점에 서의 속도의 합이 유지되는 것 을 확인할 수 있습니다. 기본적 으로 질량 보존의 법칙이 성립 하고, 비압축성인 경우 유량 보 존이 됩니다.

1)"해석 및 결과" 창 > 최종 스텝의 "총속도"를 더블 클릭합니다.
2)"결과분석" 탭 > "결과태그"를 클릭합니다.
3) 결과값을 알고 싶은 절점들을 클릭합니다.
4) 결과태그 창의 "X"(닫기)를 클릭합니다.

0 0 0 0 0 0 0	i 🖬 🖛 📼 🕈			midas Ni	X - [NFXD1]				- 🗆 ×
· 영상 묘	요소망 구조 정적해석	구조 동적해석 유동해석 해석	결과분석 도	7			482E -	스타일 *배경 * 인	1이 * 🕜 – 🗗 ×
● 컨투어 2 컨투 → 다이어그램 지우 조 빅터 *	이유형 * 💼 결과 선 * 기유형 * 💼 변형형상 * 내상 * 자동스케일(*1) 일반	2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	식 Σ수반력함계 ∰ 스텝등위면 력함계 복왕 기타기능 ▼	 ✓ 근사모멸형상 ☑ 최적모멸성성 - 최적설계후처리 	 ○ 유체해석 * ► 복합재 * ○ 보고서 특수후처리 	 ✓ 레젠드 ✓ 철정평균 ▲대/최소 모든 요소 전투어선 요소중앙 보이기/감추기 	- 동 전	<mark>토</mark> 상태조기화 도구	
😽 🔓 🔒 . i 🔍	a dur +	HFF 99999	< -> ^ ↓ 5	. ⊅ 15 ∨ 🛇 -	🕸 • 🏈 🕲 🖉), 🗠 🕸 🚥 , 🗄 🏢	수 📜 📜 🗇 🗄	i ₂ # @ . ∶ 関	14; 14; I°n 🕺
내 결과 태그		×=m	B	[점 (N) +		- KK = ×		midae N	FX ////
- 4 * - 2 * 50 - 2 * 50	속도 INCR=0 역 속도 INCR=0 력 속도 INCR=0 력 속도 1	-	13517	1.3313< 3.1830 <	¢¢			+2.95 +2.86 +2.66 +2.41 +2.20 +1.80 +1.80 +1.60 +1.44 +1.44 +1.27	
속성창	* 9	×					1.00		× ×
전투어		✓ [DATA] case1, 정상상태 유통해석	(필수), CFD: INCR=0	051 (TIME=2.51049), [UNIT] N, m			+0.86	5
· 컨투어		🕨 🔳 🚽 🖏 🔶 🛓 격렬	3 (보통) -						
전투어유럽 채우기	연속 면그리기	4 🚺 NFXD1 🗙 🚯 CFD	그래프						Þ
48	건두어								- 1 ×
· 전루의전	Falsa								
		> TOTAL CPU TIME : 335.75	3ec						
선두께.	1	> VIALL CLOCK TIME : 560.380 > SOLVER FINISHED AT : 2024/0 > TOTAL WARNINGS : 66 >	/7/31 19:05:34						
		> Solver was terminated successful	.lvt						
12 /2	and the second se								

