

이동참조 프레임

MRF(Moving Reference Frame)

1. Abstract

이동참조 프레임은 회전체의 해석을 정상상태로 해석하기 위해 사용합니다. 이동참조 프레임을 사용하면 펌프나 송풍기(팬)의 성능 평가 시 효율적으로 분석할 수 있습니다. 사용방법은 특성정의에서 활성화 시키고, 벽면이동조건에서 회전벽면을 정의하여 사용할 수 있습니다.

2. Technology 배경

2-1. 회전체 해석

그림 1 과 같이 펌프는 임펠러 회전에 의해 유체에 힘을 전달합니다. 하지만 임펠러 이외의 부품은 정지해 있는 상태입니다. 특별한 방법을 적용하지 않고 이 상태를 해석하려고 하면 요소망이 뒤틀리거나 겹치게 됩니다. 유동해석에서는 이를 해결하기 위해 여러 가지 방법들이 개발 되었습니다. 가장 많이 사용되는 방법은 슬라이딩 메쉬 기법과 이동참조 프레임 기법 입니다.

[그림 1] 회전 유체기계 해석조건

2-2. 슬라이딩 메쉬(Sliding Mesh) 기법

슬라이딩 기법은 회전하는 임펠러 주변의 요소망을 분리하여 시간에 따라 요소망을 실제로 회전시키는 기법입니다. 이 때 물리량의 전달은 접촉조건을 통해

MIDAS

전달됩니다. 슬라이딩 기법을 사용하면 외부의 영향을 반영할 수 있지만, 과도해석을 진행해야 하기 때문에 해석시간이 오래 걸리고 효율이나 토크 등의 평균값을 얻기 위해 추가적인 처리가 필요합니다.

2-3. 이동참조 프레임(Moving Reference Frame) 기법

이동참조 프레임 기법은 그림 2 와 같이 임펠러를 회전시키는 대신에 회전구간의 유체에 반대방향 속도성분을 부여합니다. 상대속도 측면에서 본다면 동일한 조건이 됩니다. 자동차 풍동 실험과 같은 원리라고 생각하면 됩니다. 자동차 풍동 실험에서도 자동차의 저항계수를 구하기 위해 자동차는 정지해 있는 상태에서 정면에 자동차 주행시의 바람을 불어줍니다. 물론 정확한 해석을 위해서는 원심력이나 코리올리 가속도에 1 대한 부분을 추가적으로 방정식에 적용해 주어야 하며 midas NFX CFD 는 이를 반영하고 있습니다.

[그림 2] 이동참조 프레임의 원리

3. Technology 이론 소개

3-1. 이동 좌표계

이동 좌표계를 정지 좌표계에 대해서 그림 3과 같이 나타낼 수 있습니다. 그림에서 XYZ 는 정지 좌표계(stationary reference frame)이고, xyz 는 이동 좌표계를 나타냅니다. 이동 좌표계의 움직임은 직선운동(translational motion)과 회전운동(rotational motion)을 나타내는 ω 를 통해 정의합니다.

1 회전 좌표계에 대하여 상대속 도로 운동하고 있는 물체가 갖는 실제적인 가속도를 말합 니다. 회전 좌표계에 대한 상 대 속도와 고정 좌표계에 대 한 구심 가속도를 합하여 고 정좌표계에 대한 가속도를 알 수 있습니다.

MIDAS

[그림 3] 이동하는 유체에서의 정지 좌표계와 이동 좌표계

midas NFX CFD 에서는 이동좌표계의 직선운동을 고려하지 않습니다. 이동 좌표계의 회전속도(rotational velocity) ω는 회전축(rotating axis)을 나타내는 단위벡터(unit vector) ê 과 회전속도의 크기 ω의 곱으로 나타낼 수 있습니다.

$$\boldsymbol{\omega} = \boldsymbol{\omega} \, \hat{\mathbf{e}} \tag{3.1.1}$$

상대속도(relative velocity)는 이동 좌표계에서의 속도이고 절대속도(absolute velocity) u 와 다음과 같은 관계로 정의됩니다.

상대속도를 지배방정식에 대입하여 이동 좌표계에서의 식을 구할 수 있습니다. 이동 좌표계에서 회전만 고려될 경우, 질량보존 방정식에서는 각각의 회전성분이 소거됩니다. 따라서 이동 좌표계에서의 질량보존 방정식은 회전이 고려되지 않은 식과 같아집니다.

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u_{i,rel}}{\partial x_i} = \frac{\partial \rho}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0$$
(3.1.3)

u_{i,rel} : *i* 방향 상대속도

운동량보존 방정식에 회전속도를 대입하여 정리하면 회전력이 반영된 다음 식을 구할 수 있습니다.

$$\rho \frac{\partial u_j}{\partial t} + u_{i,rel} \frac{\partial u_j}{\partial x_i} = -\frac{\partial p}{\partial x_j} + \rho b_j + \mu \frac{\partial^2 u_j}{\partial x_i \partial x_i} + \frac{1}{3} \mu \frac{\partial}{\partial x_j} \frac{\partial u_i}{\partial x_i} - \rho (\mathbf{\omega} \times \mathbf{u})_j$$
(3.1.4)
$$\rho (\mathbf{\omega} \times \mathbf{u})_j \qquad : j \quad \text{방향 회전력}$$

4. Technology 사용법

4-1. 예제 설명

예제는 교반기(Mixer) 모델이며 형상은 다음과 같습니다.

구분	т	Н	D	В	К	b	d	w	h
ヨ기(m)	0.3	0.3	0.1	0.03	0.075	0.02	0.012	0.025	0.02

교반기의 해석은 슬라이딩 메쉬 기법으로도 해석 가능합니다. 하 지만 평균적인 교반기의 성능 을 빠르게 파악하기 위해서는 MRF기법을 추천합니다. 해석목적은 다음과 같습니다.

- 교반기 내부 유동 특성 파악

- 배플 효과 검토

- 임펠러에 의한 혼합 효과 확인

해석조건은 다음과 같습니다.

- 밀도 : 998.2kg/m³
- 점성 : 0.00089kg/m·s
- 회전속도 : 250rpm

본 예제는 정기교육을 이수하신 분을 기준으로 작성되었습니다.

4-2. 예제 따라하기

4-2-1. 기하형상 제작

- ❶ "형상"탭 > "CAD 파일"리본메뉴 > "불러오기"를 클릭합니다.
- ❷ 배포된 "Tech Note CAD 이동참조프레임.X_T" 파일을 선택합니다.
- 3 "열기"를 클릭합니다.

0 D ≥ 2 0 0 0 0 4 × + × +					mida	IS NFX - [NFXD1]						-	□ ×
월상 요소망 구조 정적해석 -	구조 동적해석	유통해석 해석	4 결과분석	도구					사용	모드 * 스티	입 비경 '	언어 * 🔇	- 6 ×
·····································	· 슬리드 선	/ 🗗 🌍	▲ 이동 4	-케일 투영	상위형상 하위형:	상 형상검사 간력호	자동 유동영역 중 연결 추출	·립면 유정 추출					
CAD파일 형상 생성		1	상 수정		차원수 변경		도구						
😽 🔓 🖯 . 🔍 🖾 🖾 🗘 C C 🕂 🗄	844 🖬	55555	$\leftarrow \rightarrow \uparrow$	↓ ℝ 戸 15	$\mathbf{v} = \mathbf{v} \cdot \mathbf{v}$	900.	🗢 🗘 🚥 . 🗄 🎹	中 14 19 19	H H2 # €	. 🔊 🗄	k; ₩; °n :	'n ?	28 2° .
해석 및 결과	AD파일 불러의	오기										×	1Ă ES
항유 번째 ② 새 작업 ^축	밝는 위치(I):	늘 CFD테크노트	- 이동참조프	레임	~ 0	• 🗉 😕 🏌							里底
- 🌆 해석케이스	<u> </u>	이름	^		수정한	날짜	유형	크기	-				
	Ū,	Tech Note C	AD 이동참조3	뜨레임.X_T	2014-0	7-29 오후 2:19	X_T 파일		120KB	2)			
	_												>
	1당 와면												
												\geq	2
라이	이브러리												
모털 하중/경계 해석 및 결과													
\$423	내 PC												9
100 5 Sth	2	파일 이름(N):	Tech Note	CAD 이동참:	조프레임					2	열기(0)	(3)	
4	트워크	파일 형식(T):	Parasolid (9 to 34) File:	s (+.x_t:+.xmt_t:	<t;+,×_b;+,×mt_bi< td=""><td>in)</td><td></td><td>-</td><td></td><td>취소</td><td></td><td></td></t;+,×_b;+,×mt_bi<>	in)		-		취소		
			□ 읽기 전용	용으로 옅기(R)								
형상	(수정			추명왕기		া গ্রমন্থণ থ	성전보 유지하기						~
	평상정리		0-			2 3A	[] 하중	💟 접축	하석조감	ÿ			
	월상정규화		2	자자동계산	0.0001	7본재료							
100 B	상수정 수준	레벨 1 (보통)	~									Ľ	
			대상모멸	의 걸이단위	mm	×	8	러오기옵션	모두	조기화		×	
	4	🟮 NFXD1 :	×									.il	Þ
	<u> 움직</u>	창										* 4	L X

- "모델"창으로 이동합니다.
- 😢 "기하형상"트리를 열어 솔리드 형상이 2개인지 확인합니다.
- ③ "보기모드(기하형상)"을 "선"으로 선택합니다.
- 🕑 작업화면 마우스 우클릭 > "모든 가이더 감추기"를 클릭합니다.

이동참조 프레임 해석 시에는 회전하는 임펠러 주변영역과 정 지해 있는 영역을 구분하여 유 동체적을 생성하여야 합니다.

4-2-2. 재료·특성 정의

- ❶ "요소망"탭 > "재료/특성"리본메뉴 > "재료"를 클릭합니다.
- ❷ "생성"옆 화살표 클릭 > "유체(유동해석)"을 선택합니다.
- ③ "FRESH_WATER_25'C"를 선택합니다.
- ④ "확인"을 클릭합니다.
- 5 "닫기"를 클릭합니다.

midas NFX CFD

TECH NOTE

특성 정의하기(일반영역)

"요소망"탭 > "재료/특성"리본메뉴 > "특성"을 클릭합니다.
 "생성"옆 화살표 클릭 > "3D..."을 선택합니다.
 "3D 유동해석"탭을 선택합니다.
 이름에 "일반영역"을 입력합니다.
 재료를 "2:FRESH_WATER_25'C"로 선택합니다.
 "적용"을 클릭합니다.

					midas NEX - INF						- 0
🗁 🤔 🔂 🗂 🛄 🗮 🌥 여 명상 요소망 정적/일 해·	▶ 프 ♥ 석 동적/과도엘 해석	유통해석 해석	결과분석 도구		indus ini in prin				사용모드 * :	스타일 🔻 배경 🔻	언어 🔻 😧
I. 🔊 之	🔥 🧐 기본크기	a 🛲 🚱	🔒 2D->3D	19 직선 💋	11	९ ४४ ० €	🔍 %% 🔀	형상수정 🖳 하위	82	100 I	본호수정
특성 · 트기지정 레	이어지정 🔗 특성지정	1D 2D 3D	🚰 재생성	·····································	회전 패스럽	9X 삭제 8:	्र भग जि करा र	따라미터 🛄 요소 회전여경 🔽 스로	분할 🎒 묘소측정 c		업사 👻 🎒 1 910년 🗸
재료/특성	제어	생성	HT 시드 세종종	추용	비용 이동/복사	· 영립 +Q, 절점	TR 48 mg	8008 <u>R</u> 07 84	-		도구
5 8 - 1 a 🖸 a a	ନ ନ + \⊞ <mark></mark> "	1 000	8 6 6 (*	> ^ ↓	Γ , ⊅ 15 ∨ §	• 🕸 • 📎	0 🗵 .	🗢 🗘 🚥	- Ⅲ ቍ ሥ	四月 19 19 19	• # ©
가/수정		× 0.104	1	🤡 👻 718	모	든 기하형상 (· TATA	- 🗙 🖏	🕒 🚯 🖉		
이공 좋류	하위좋류	생성 🔹									
		1D 2D			-						
	L	3D 71 EF	2								
	-	불러오기				9)			
							-1				
		요기									
	* + ×					4PS					
						-					
					V		y				
											ZY
											K×.
		A NEVD1 V									
		🟮 NFXD1 🗙									- 1
	· · · · · · · · · · · · · · · · · · ·	야 NFXD1 × 장		X: -0,1499	9~0,14999 Y: −0,14	999~0,14999	9Z:0~G:2N	:0 E:0		N × m ×	* 1 ~ [s
· - 특성 생성/변경	4 2 2 2	③ NFXD1 × 장		X: -0,1499	9~0,14999 Y: −0,14	999~0,14999	9 Z:0~ G:2 N	:0 E:0		N v m v	v 4 J ∨ se
실 특성 생성/변경		্ট NFXD1 × উ		X: -0,1499	ə~0,14999 Y: −0,14	999~0,14999	97:0~ G:2 N	:0 E:0		N v m v	¥ 4 J ∨ se
년 특성 생성/변경 비드 복합재료 슐리드	JD 유동해석	◎ NFXD1 × 8 3 화물 유동해4	석	X: -0,1459 X	9~0,14999 Y: −0,14	999~0.14999	97:0~ G:2 N	:0 E:0		N v m v	¥ ₽ J ∨ se
일 특성 생성/변경 리드 복합재료 슬리드 컨호 1 이름	3D 유동해석	● NFXD1 × 8 3 말날 영역 일반 영역	x)	X: -0,1499 ×	3~0,14999 Y: −0,14	999~0,14999	9 Z:0~ G:2 N	:0 E:0		N V m V	y I J ∨ se
일 특성 생성/변경 리드 복활재료 슐리드 ^{번호} 1 이름	4 물먹 3D 유동해석 5		4)	X: -0,1499 X	3~0,14999 Y: −0,14	399~-0 <u>.</u> 14999	9 Z:0~ G:2 N	:0 E:0		N ~ m ~	, v se
일 특성 생성/변경 미드 복활재료 슐리드 번호 1 이름 재료	3D 유동해석 (2: FRESH	③ NFXD1 × 3 활물 유통해4 일반영역 4 •	4	X: -0,1499	9~0,14989 Y: -0,14	9990.14999	9 Z:0~ G:2 N	:0 E:0		N v m v	v # J ∨ se
실 특성 생성/변경 리드 복합재료 슐리드 컨호 <u>1</u> 이름 재료	3D 유동해석 (2: FRESH 전 12 - 7	● NFX01 × ◎ ③ 발물 유동해 일반영역 ④ 4 WATER_ ✓	v 5	X: -0,1439 X	ə-0,14999 Y: −0,14	999-0,14383	9 Z:0~ G:2 N	:0 E:0		N v m v	¥ ₽
실 특성 생성/변경 리드 복합재료 슐리드 컨호 1 이름 재료 재료좌표계	3D 유동해석 3D 유동해석 2: FRESH 전체직교조		4) <u>5</u>	× -0,1499	9-0,14999 Y: -0.14	899-0,14999	G:2 N G:2 N	:0 E:0		<u>N ~ m ~</u>	, 1 → 256
일 특성 생성/변경 리드 복합자료 슬리드 컨호 1 이름 자료 지료좌표계 - 이동철조 프레임	3D 유동해석 (2: FRESH 전체직교조		4 5	X: -0,1499	9-0,14989 Yr -0,14	999-0,14999	9 Z:0~ G:2 N	:0 E:0		<u>N ~ m ~</u>	v ⊅ J ∨ se
일 특성 생성/변경 리드 복합재료 슬리드 컨호 1 이름 재료 재료좌표계 - 이동철조 프레임	3D 유동해석 2: FRESH 전체직교조 상세정의	● NFXD1 × 3 말보 응 유동해 일반영역 ④ - - - - - - - - - - - - - - - - - - -	4	X: -0,1493 X	90,14989 Y: -0,14	999-0,14999	9 Z:0~ G:2 N	:0 E:0		N ~ m ~	ب ب <u>ا ح</u> 56
일 특성 생성/변경 리드 복합재료 슐리드 컨호 1 이름 재료 재료좌표계 이동참조 프레임	3D 유통해석 (2: FRESH 전체직교조 상세정의	● NFXD1 × 3 3 말반영역 ④ 4 WATER_ ✓ 가표계 ✓	4	× -0,1459	9-0,14989 Yr -0,14	999-0, 14393	9 Z:0- G:2 N	:0 E:0		N ~ m ~	- 4 J
일 특성 생성/변경 리드 복합자료 슬리드 컨호 1 이름 자료 지료좌표계 - 이동철조 프레임	3D 유통해석 (2: FRESH 전체직교조 상세정의	● NFXD1 × 3 말반영역 ④ <u>- WATER_ →</u> 가표계 →	¥ 5	× -0,1499 ×	9-0,14989 Yr -0,14	999-0, 14393	9 Z:0- G:2 N	:0 E:0		N ~ m ~	÷ ₽
일 특성 생성/변경 리드 복합자료 슬리드 컨호 1 이름 자료 지료좌표계 - 이동참조 프레임 - 다공성 매질	3D 유통해석 (2: FRESH 전체직교조 상세정의 상세정의	● NFXD1 × 3 말반영역 ④ <u>- WATER_ →</u> 가표계 →	4	X: -0,1499 X	90,14989 Y: -0,14	500-0,14309	9 Z:0~ G:2 N	-0 E:0		N ~ m ~	, 4 1 , ∧ 26
일 특성 생성/변경 리드 복활재료 슐리드 컨호 1 이름 재료 재료좌표계 이동참조 프레임	3D 유동해석 (2: FRESH 전체직교조 상세정의 상세정의	● NFXD1 × 3 말보영역 ④ <u>-</u> WATER_ ✓ 가표계 ✓	4	X: -0,1499	90,14989 Y: -0,14	500-0,14309	92:0- G:2 N	-0 E-0		N ~ m ~	v a
월 특성 생성/변경 리도 복황재료 출리도 번호 1 이름 재료 재료좌표계 	3D 유동해석 (2: FRESH 전체직교조 상세정의 상세정의	● NFXD1 × 3 3 말반영역 ④ 4 <u>WATER_ →</u> 가표계 →	4	X: -0,1499	9-0,14989 Yr -0,14	509-0, 14309	9 Z:0~ G:2 N	-0 E-0		N ~ m ~	1, ▼ J ∨ se
원 특성 생성/변경 리드 복황재료 술리드 컨호 1 이름 재료 재료좌표계 이동찰조 프레임 	3D 유동해석 (2: FRESH 전체직교조 상세정의 상세정의	● NFXD1 × 3 3 말반영역 ④ 4 <u>WATER_ →</u> 가표계 →	4	X: -0,1499	9-0,14989 Yr -0,14	509-0, 14309	9 Z:0~ G:2 N	-0 E-0		N ~ m ~	▼ 0]J ~]se
원 특성 생성/변경 리도 복황재료 술리도 번호 1 이름 재료 재료좌표계 이동철조 프레임 이동철조 프레임	3D 유동해석 (2: FRESH 전체직교조 상세정의 상세정의	● NFXD1 × 3 3 말반영역 ④ 4 <u>WATER_ →</u> 가표계 →	4	X: -0,1499	9-0,14989 Yr -0,14	500-0, 14309	9 Z:0~ G:2 N	-0 E-0		N ~ m ~	, 4]J ~]se
월 특성 생성/변경 리도 복황재료 술리도 번호 1 이름 재료 재료좌표계 - 이동철조 프레임 - 다공성 매월 - 인식회로기판	3D 유동해석 (3D 유동해석 (2: FRESH 전체적교조 상세정의 상세정의	● NFXD1 × 3 3 말반영역 ④ 4 <u>WATER_ →</u> 가표계 →	4	X: -0,1499	9-0,14989 Yr -0,14	500-0, 14309	9 2:0~ G:2 N	-0 E-0		N ~ m ~	¥ 0]J ∨]se
월 특성 생성/변경 리도 복황재료 출리도 전호 1 이름 재료조표계 - 이동참조 프레임 - 마공성 매월 - 인식회로기판 - 인식회로기판	3D 유통해석 (3D 유통해석 (2: FRESH 전체적교조 상세정의 상세정의	● NFXD1 × 3 3 말반영역 ④ 4 <u>WATER_ →</u> 가표계 →	4 5 0 [T]	X: -0,1499	9-0,14989 Y: -0,14	500-0,14309	92:0~ G:2 N	-0 E-0		N ~ m ~	¥ 0]J ∨]se
월 특성 생성/변경 리도 복황재료 출리도 전호 1 이름 재료 재료좌표계 	3D 유동해석 (3D 유동해석 (2: FRESH 전체적교조 상세정의 상세정의	● NFXD1 × 3 3 말반영역 ④ <u>- WATER_ →</u> - ····································	4 5 0 [T]	X: -0,1499	9-0,14989 Yr -0,14	500-0,14309	92:0~ G:2 N	-0 E-0		N ~ m ~	¥ 0]J ∨]se
월 특성 생성/변경 리도 복황재료 출리도 번호 1 이름 재료 재료좌표계 - 이동철조 프레임 - 다공성 매월 	3D 유동해석 (2: FRESH 전체적교조 상세정의 상세정의	 ● NFXD1 × 3 ● 말문 유통해 ● 말문영역 ④ ● 대표계 × 	4 5 0 [T]	X: -0,1499	9-0,14989 Yr -0,14	500-0,14309	92:0- G:2 N	-0 E-0		N ~ m ~	¥ 0]J ∨]se
월 특성 생성/변경 리도 복황재료 출리도 번호 1 이름 재료 재료좌표계 이동창조 프레임 이동창조 프레임 이동창조 프레임 이동창조 프레임 이동창조 프레임 이동창조 프레임 이동창조 프레임	3D 유통해석 (2: FRESH 전체직교조 상세정의 상세정의	● NFXD1 × 3 3 말반영역 ④ 1_WATER_ ✓ 1-WATER_ ✓ 1-WATER_ ✓	4 5 0 [T]	X: -0,1499	30,14989 Y: -0,14	500-0.14309	92:0- G:2 N	00 E:0		N ~ m ~	,

특성 정의하기(MRF 영역)

이름에 "MRF 영역"을 입력합니다.
 재료를 "2:FRESH_WATER_25'C"로 선택합니다.
 "이동참조 프레임"을 체크합니다.
 "상세정의"를 클릭합니다.
 회전축의 원점 "0,0,0"과 방향 "0,0,1"을 입력합니다.
 RPM 을 선택하고 "각속도"에 "250"RPM 을 입력합니다.
 이동참조 프레임 창의 "확인"을 클릭합니다.
 "3 차원 특성 생성/변경" 창의 "확인"을 클릭합니다.

		○ 방향정의	02	점 정의
# 2 0 4			0-	
		원섬	-	<u></u> m [5
TH C	2: ERESH WATER	방향		0, 0, 1
재료자표계	전체직교좌표계 >	회전속도		
		O RPM	OF	adian
✔ 이동참조 프레임	3	각속도		6
	상세정의	•	250 RPM	없음 ~
- 다공성 매질	ALMEROL	병진속도		
	2세2의	VX	0 m/coc	00
- 인쇄회로기판			- Invisec	ave .
	상세정의	Vy		
			0 m/sec	없음 🗸
복사매질		Vz		
고정온도	0 [T]		0 m/sec	없음 ~
· 중첩요소망	승류영역			

모델의 회전축을 주축(x,y,z)과 일치 시키는 것이 편리합니다.

4-2-3. 인접 조건 설정

- "형상"탭 > "도구"리본메뉴 > "형상검사" > "중복형상검사"를 클릭합니다.
 "적용"을 클릭합니다.
- ③ 분리된 유체부분이 중복형상으로 나오는지 확인합니다.
- ④ "닫기"를 클릭합니다.

() 🗋 😂 😂 🔂 🍏 🖨 ()	▶ (→ ⋋ 〒 구조 정적해석 구조 동적해석 유용해석 해석 결과분석 도구	midas NFX - [NP	_ 🗆 × 사용모드 '스타일 '배경 '언어 ' 🙆 _ 큔 ×
· · · · · · · · · · · · · · · · · · ·		····································	
: ୬ ର <u>ି</u> ∂. : ୧ ସା ସ		× 15 ∨ Ø · Ø · Ø @ . : @ © . : Ⅲ + 坪 №	
모델	영상검사	🗙 기본 - 모든 기하형상(- 🌈 🎼 🗮 💥 🗣	
방국 · · · · · · · · · · · · · · · · · · ·	월상경사 월상수정 문복왕상감사 선영역함석 《 보이는 형상만 검사 공자. 10-007 m - 검사 등류 - 물복경 검사 - 하위 정 포함 - 중복 선/연결선 검사 - 중취 선 포함 - 중복 전 검사 - 양 하위 선 포함		ž
	중복 월상 삭제	XX	Č,
	· 전 적용 달기		¢ ₹ # X

- ❶ "요소망"탭 > "요소 생성제어"리본메뉴 > "시드제어"을 클릭합니다.
- 왿 임펠러와 배플을 드래그하여 선택합니다.
- ③ "분할크기"를 "0.004"로 입력합니다.
- ④ "적용"을 클릭합니다.

선형증감(길이) 등의 기능을 이 용하여 요소망의 크기가 자연스 럽게 증감되도록 하여야 계산이 안정적으로 진행됩니다.

- 실린더 외곽선을 선택합니다.
- 2 방법을 "선형증감(길이)"로 변경합니다.
- ❸ "시작길이"에 "0.004"를, "끝 길이"에 "0.012"를 입력합니다.
- ④ "대칭시드"를 체크합니다.
- ⑤ "확인"을 클릭합니다.

유동장이 복잡할 것으로 예상되 는 임펠러와 배플 주변에 요소 망을 집중시켜 줍니다. 실무모델 적용 시에는 요소크기를 좀 더

작게 입력하는 것을 추천합니다.

외부 CAD에서 유체를 분리한 경우 중복형상으로 나타나지 않 을 수 있습니다. 이런 경우에는 "도구" 리본메뉴 > "자동연결"을 선택하여 중복면을 생성합니다.

- ❶ "요소망"탭 > "생성"리본메뉴 > "3D"를 클릭합니다.
- 😢 "모델"창 > "기하형상"트리에서 임펠러 솔리드만 체크합니다.
- ③ 임펠러 솔리드를 선택합니다.
- ④ "크기"를 "0.008"로 입력합니다.
- "특성"을 "MRF 영역"으로 선택합니다.
- 🙆 "적용"을 클릭합니다.

Image: Series of the series	0 0 0 0 0 0 0	🖬 🖬 🛎 🕪 🖘 🗉	midas NFX - (NFXD1)	- 🗆 ×
	· · · · · · · · · · · ·	요소망 구조 정적해석 구조 동적	개석 유동해석 해석 결과분석 도구 사용모드 '스타일 '배경	* 언어 * 🥑 🗕 🗗 🗙
H + 2 i 44 / 42 i 4 - 2 i / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 /	NFX Nastran ABAQU	US 재료 특성 복합단면 시드제		
Image: Construction of the set of the	FE 모델	재료/특성	요소 생성제어 요소 생정 도구	
as ***** if as if as if as if as if as if as if as if as if as if as if as if as if as if as if as if as <t< th=""><th> C</th><th></th><th>B 요소망 생성(솔리드) X 15 · · · · · · · · · · · · · · · · · ·</th><th>🕴 🗰 🗸 i 👹 🙄</th></t<>	C		B 요소망 생성(솔리드) X 15 · · · · · · · · · · · · · · · · · ·	🕴 🗰 🗸 i 👹 🙄
P# <	모열	* ₽ ×	자동-승리도 사사 우리도 20~20 * 승리도 (0) * (6 6 = 🛞 🖏 🚯 🚱 🧬	20 20
Image: Set in the set in	항목 田 延 재료 中 地 특성	번호 색상	1개 대상 선택됨	iii ii
Image: Control of the control of t			요소 크기설정	
Image: Second	 ● 약 요소망제어 ● 7 월 요소망 ● 8 접촉 	철러 2	전체품 설정 전체품 설정 전체 적계 0.026	
4:87 • # * * * 4:97 • # * 4:97 • # * 9:98 • 0.0000715 m² 30:98 27 0.00002015 m² 30:98 27 0.000002015 m² 30:98 27 0.00000000000000000000000000000000000	부 FSI 인터페이스 유가지 모열 하중/경계 해석 S	१ ख्रे-		
▲ ●	속성장	→ ∓ ×		
다. 이용 이 000000 15 m 제	⊿ 이공			
이름 합력 생성 0.00577 적용 0.0052415 m² 활동 성 0.0025425 m² 활동 성 0.0025827 m² 활동 성 0.005587 m² 활동 1 1.002 m² 행 2 0.005479 m² 지료 학교 1.002 m² 전용 ****	번호	2	E 4	
4% 000000000000000000000000000000000000	이공	임퀄러		
비료 0:5 분 명 비료 0:00592751 m 15 분 8 주 실 [0, 0, 0.099755] m 15 분 15 × 0.0059575 m 15 분 15 × 0.005957 m 15 분 15 × 0.005957 m 16 분 16 × 0.005957 m 17 10 × 0	색상	00BFFF	2 2: MRF 89 ~ (5)	
비료 DU0002415 m² 활동 년 [0] 0,0.00997551 활동 연 / 0.03557 m 평동 연 // 1: 824 · ·	새로	0: 없음		
** 등 4 (0, 0, 0,099755) m 최당 현 4 (0, 0,099755) m 최당 현 5 (0, 0,099755) m 최당 현 5 (0, 0,099755) m 최당 현 5 (0, 0,05479 m 최당 한 5 (0, 0,05479 m) 최당 한 5 (0, 0,05479 m) 	7-4) Xi2b	0.000692415 m ³		
하는 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	23 지관 조사	[0 0 0 00007FT]	요소망세트 임펄러 🗸	
해 도 명 수 2005-00 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	르히 방법 치자 바건 V	[0, 0,00999/55] m		Z
	2012 2013 X	0.0395637 m	🕅 🛷 🛍 확인 취소 적용	1 million 1
MC EV 6 WUSHYY III NE EV 6 Léé QH 0 NEXD1 x Age BRB V = 0.005 0.005 / 20.005 - 0.0	10 10 10 Y	0.0395037 m		Y I
4 ● 4 ●	최연 면영 Z 파트 타입	0.0534/9 m 1: 유언체		Sx.
4 ● 4 ●				
적용 ^{출독장} ♥ 부 X V:=0.075-0.075 V:=0.075-0.075 7:0.06-0.12, 6/2.1/0.510				P
V: _0.0750.075_V: _0.075_V: _0.075_V: _0.075_V: 0.020.120.22_W:0_E:0		적용	움력장	₩ # ×
A, UUTAAUUTA UTA TUUTAAUUTA ZUUUDAU IZ UTZ INU EUU N VIM VI. VISP/VI 1			X: -0.075~0.075 Y: -0.075~0.075 Z:0.09~0.12 G:2 N:0 E:0 N 🗸 m 🗸	J × SPC × J

- ❶ "모델"창 > "기하형상"트리에서 탱크를 체크합니다.
- 🕗 탱크 솔리드를 선택합니다.
- 3 "크기"를 "0.012"로 입력합니다.
- ④ "인접면 요소 맞춤"을 체크합니다.
- ⑤ "특성"을 "일반영역"으로 선택합니다.
- 🙆 ">>"를 클릭합니다.
- 🕡 "절점병합"을 체크합니다.
- 🖲 "확인"을 클릭합니다.
- 🥑 "확인"을 클릭합니다.

MIDAS

4-2-5. 경계 조건 입력

- ❶ "유동해석"탭 > "일반 유동해석"리본메뉴 > "벽면" > "벽면"을 클릭합니다.
- ❷ "요소망"과 "요소망 제어"의 "크기 지정"을 체크 해제합니다.
- ③ 회전하는 벽면을 드래그하여 선택합니다.
- ❹ "이름"을 "회전벽면"으로 입력하고 "종류"를 "면"으로 선택합니다.
- ⑤ "벽면종류"를 "무차원벽면거리적용"으로 선택합니다.
- ⁶ "벽면이동적용"을 체크합니다.
- 7 "벽면이동정의"를 클릭합니다.
- ⑧ "생성"을 클릭합니다.
- 🥑 "벽면 이동 효과"탭을 선택하고 "회전 이동"을 체크합니다.
- 🔟 "원점"에 "0,0,0"을, "방향"에 "0,0,1"을 입력합니다.
- ❶ "각속도"에 "250"RPM을 입력하고 "확인"을 클릭합니다.
- ⑫ "닫기"를 클릭합니다.
- 📵 "조건선택"을 "조건선택-1"로 선택합니다.
- ⑭ "확인"을 클릭합니다.

벽면 ×	벽면이동	효과 관리 항목		X	면이동효과 추기	/수정	
선 박연 면 박면 이름 회전백면 4	번호 1	이름 조건선택-1	종류 조건선택-1	생성 수정 보사	번호 <u>1</u> 벽면 이동 효과 요소	이름 조건· (9)	19-1
표류 면 · · · · · · · · · · · · · · · · · ·				삭제	 ✓ 회전 이동 회전쪽 ● 방향정의 원점 	<u></u>	점 정의 0, 0, 0 m
북한 북한 종류 무자원북면거리적용 ↓ 북한거리 65	5				방향 각속도 ORPM	R	0, 0, 1 adian
파티를 벽면 종류 없음	7				역폭도 - 병진 이동	250 RPM	
- 백면점착효과					병진속도	0 m/cor	88.0
접촉각 60 [deg] 없을 ~					VX	0 m/sec	219 V
CFD 경계세트 유동해석 경계조건 세트-1 🗸 📜					Vz	0 m/sec	88 V
🕮 🖉 🔍 🔹 🚺 अड	e			1	Ka	259	1

- ❶ "유동해석"탭 > "일반 유동해석"리본메뉴 > "벽면" > "벽면"을 클릭합니다.
- ❷ "이름"을 "고정벽면"으로 입력하고 "종류"를 "면"으로 선택합니다.
- 배플과 탱크의 옆면, 밑면을 선택합니다.
- ❹ "벽면종류"를 "무차원벽면거리적용"으로 선택합니다.
- 🖲 "적용"을 클릭합니다.

- "이름"을 "자유수면"으로 입력하고 "종류"를 "면"으로 선택합니다.
- ❷ 윗면을 선택합니다.
- ④ "확인"을 클릭합니다.

B ≥ 2 B ≤ 3 + + + + + + + + + + + + + + + + + +	midas NEX - [NEXD1] – 🗆 🗙
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	구조 동작해석 유용해석 해석 결과분석 도구 사용모드 '스타일 '배경 '언어 ' 🕑 - 6 🗙
अक्रिये <	Constant See See See See See See See See See Se
하중/경계	
도등 변호 · · · · · · · · · · · · · · · · · · ·	UM <
색상 00BFFF 종류 공연	비병면이동효과 적용
면적 0.0702128 m ³ 무게좋십 [-4.16925e-017,	조건선택 않음 🗸 膨
	백면정착효과
	값유격 60 (deg) 요음 ····································
	X: -0.149990.14999 Y: -0.14999 -0.14999 Z:0~ G:2 N:97.655 E:533.748 N ∨ m ∨ J. ∨ Ser ∨

4-2-6. 해석 케이스 정의

- ❶ "해석"탭 > "해석케이스 정의" 리본메뉴 > "단일해석"을 클릭합니다.
- ❷ "이름"에 "CASE1"을 입력, "해석종류"에 "정상상태 유동해석"을 입력합니다.
- ③ "해석제어"를 클릭합니다.
- ④ "시간스텝개수"에 "2000"을 입력합니다.
- ⑤ "결과출력"의 "스텝간격"에 "20"을 입력합니다.

6 "확인"을 클릭합니다.

C C C C C C C C C C C C C C C C C		동생석 해석 결과분석 도구 ····································	midas NPX - [NPXD1]	- 미 X 사용모드 "스타철 "배경 "언어 " 🥹 - 8 X
	파작음산 정의 작석 누가/선경 경찰 고요요도 전체서트 (소 전체서트 (소 전체서트 (소 오말) 종급개 유통해석 경계조건 서트-1	도구 >> 월일차45 이전 요소망/45 이전 요소망/45 이전 요소망/45 이전 요소망/45 이전 요소망/45	 ※ ※<th>- : : : : : : : : : : : : : : : : : : :</th>	- : : : : : : : : : : : : : : : : : : :
			생성 · 4계 지중스케일릭아 확인 취소 격용	Ľ.
	d @ # 8	NFXD1 ×		₽ ₩ # ×

모율		
✓ 일반유동		
🗌 열전달		
고체열전달		
	고급 모듈	
반복계산		
시간간격	0.1 sec	
시간스텝개수	2000 (4)	
최대반복횟수	3	
수렴기준/오차	0	
□ 시간 일치 진행	□재시작	
□ 유동-이류 분할히	·····································	
결과출력		
시작스텝	1 스텝간격 20 Step	(
□ 중간단계 재시작	파일생성	
물리적 데이터		
작동압력	101325 N/m ²	
중력 벡터	0, 0, -1	
대칭 평면		
□ 평면23 X - 위치	m	
□ 평면31 Y-위치	m	
□ 평면12 Z-위치	m	
	내부 반복계산 정의	
	초기 조건	

4-2-7. 계산 실행

- ❶ "유동해석"탭 > "모니터링"을 클릭합니다.
- 😢 "모델"창의 기하형상 체크를 해제하고 임펠러 주변 요소망만 체크합니다.
- 3 적당한 위치를 클릭합니다.
- 🕑 "모델"창의 "요소망"트리에서 탱크 요소망을 체크합니다.
- 상부 적당한 위치를 클릭합니다.
- 🜀 "총속도"를 체크합니다.
- 🕡 "확인"을 클릭합니다.

고나터링 위치는 값의 확인이 필요한 중요한 부분으로 선택합 니다. 모니터링을 지정하면 *.grf 파일에 매 step마다 저장됩니다.

B B B B B C C A A A	midas NFX - [NFXD1]	- 🗆 ×
🚺 • 평상 요소망 구조 정적해석 구조 동적	1석 유통해석 해석 결과분석 도구	사용모드 '스타일 '배경 '언어 ' 😢 🗕 🗗 🗙
	· · · · · · · · · · · · · · · · · ·	
SALANA CC+HL	◎●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●	≰© . ⊠ 4.46 °n 4n 47 28 29 °.
τ <u>ε</u> → 4 ×	모니터링 정의 🛛 🕹 🙀 🔞 🕼	B 🐣 🚳
	22 <	
		2 y 2 x
	2年8 V: L0 14000L0 14000 V: L0 14000L0 14000 7:0L, C*2 N:07 REE E:E22 74	

- 1 "해석"탭을 클릭합니다.
- ❷ "해석" 리본메뉴 > "실행"을 클릭합니다.
- ③ "CASE1"이 체크 되어있는지 확인한 후 "확인"을 클릭합니다.

"Norm graph"와 출력창으로 Norm 값이 0.001 이하로 떨어지는지 확인합니다.
 모니터링 값이 정상상태에 도달했는지 확인합니다.

모니터링 위치에 따라 정상상태 에 도달하는 시간이 달라집니다. 따라서 해석목적에 맞는 곳에 모니터링을 하고 그 값이 일정 해 질 때까지 반복계산을 수행 해야 합니다.

4-2-8. 결과 검토

- "결과분석"탭 > "특수후처리"리본메뉴 > "유체해석" > "유선"을 클릭합니다.
- ❷ "스텝"을 최종스텝으로 선택합니다.
- ③ 임펠러 부근 요소망만 활성화합니다.
- ④ 윗면과 아랫면 각각 4 군데씩 클릭합니다.
- 5 전체요소망을 활성화 합니다.
- ⑤ "등각보기"를 클릭합니다.

() D 🖻 😫 🖯 🖬 🖘 🖛 👘	<u></u>	midas NFX - [MRF 따라하기] ×
·····································	유선 >	사용모드 * 스타일 * 배경 * 언어 * 🥹 🗕 🖉 🗙
 ● 전투어 ● 전투어유럽 ▼ ● 결과 선 ▼ ● 전의정적 ● 전원정상 ▼ ● 전원정상 ▼ ● 철과석상 ▼ ● 철과석상 ▼ ● 철과석상 ▼ 	해석 케이스 case1 ~ 스텝 정상상태 유통해석 (필수):CFD ~	지 않 유재에 적 · · · · · · · · · · · · · · · · · ·
25 G . 1 Q Q Q Q . 1 Q .	선택 타입 절점 🗸	
	위치 -0.203199, 0.0197199, 0 팩스 종류 이 선 두개 2 이 문 주개 2 이 문 주개 2 이 한 부산 ··································	P P
_ 보이기 False 선색	✓ 이전 유선 남기기 / 조사반경 > 전 유신 남기기 조용 달기 >>	Co., Ltd. ALL RIGHTS RESERVED.
		75-0 075 V -0 075-0 075 7:0 08-0 12 C-2 N:07 685 E-533 748

0 🗅 🕞 😂 🖯 😋	+ = ↔ =	- -			midas	NFX - [MRF 따리	바하기 그			- 0	×
행상 요소망	정적/열 해석	동적/과도열 해석	석 유통해석 해석 결과	분석 도구					사용모드 ~ 스타일	· * 배경 * 언어 * 🥹 .	- 8 ×
한 컨투어 전투어유형 ▼ → 타이어그램 체우기유행 ▼ → 범리 ▼ 관계색상 ▼ 일반	결과 선 ▼ 클 변험험상 ▼ 실제스케일	-	결과태크 🔓 사용자정의 수식 임의선추출 🌄 음력 선행화 결과주출 👉 임의방량 부재택합계 고급	Σ국 반력함계 중 스럽등위면 내용 기타기능 ▼	▲ 근사모델험상 ▲ 전사모델험상 ▲ 최적모델성성 ▼ 최적설계후처리	유치해석 * 분 복합재 * 장 보고서 특수루처리	 ✓ 레전드 ✓ 혈정 ▲ 회대/최소 모든 요소 전투어선 요소 보이기/감 	명균 노 * 중앙결과 추기	> 2 상태초기화 용선 도구		
🤧 🔓 🔂 . ا 🔍 🞑	220	P 6	1- 1- 3 5 5	₽ ₽ €	-> ^ ↓ K	7 15 V 🛇	- @ - 🕅 🔂 💆	🗊 🧅 🗘	🚥 . : 🏢 수 📖 🔑	₽ 🐙 🏪 🛊 📦 .	. 💓 👋
모델		• # ×	i i i i i i i i i i i i i i i i i i i	1 m B.	४ - जि.ि		1 1			midas NFX////	
방복 마비 특석 마 주 (1) 가 항상 마 주 (1) 가 항상 마 주 (1) 가 항 성상 마 주 (1) 가 한 명크 마 주 (1) 가 본 요소 방식트 마 주 (1) 가 주	世本 1 2 1 3 4	* # ×	0 0.0521 0.154						9 9 9 9 0	PLUE Drow VEL.NZ, Mee 0.005, 144 0.005, 142 0.005, 142 0.005, 142 0.005, 142 0.005, 142 0.005, 142 0.005, 044 0.005, 0440, 045, 045, 045, 045, 045, 045, 045, 04	
			DATA Land 7444ELSE	(四合) (四),110	0-0101/TIME-7 2228	CONTINUE				×	
				and a second		SV CONTINU					
			•	레벨 3 (보통	•) •						
			에 WRF 따라하기 _	×							Þ
Ready					X: -0,14999~0,1	4999 Y: -0,149	99~0,14999 Z:0~ 0	G:2 N:97,665 E	E:533,748 N	∨m ∨J ∨ sec	×

- ❶ "해석 및 결과"창 > 최종 스텝의 "총속도"를 더블 클릭합니다.
- ❷ "특정결과면 보이기"를 클릭합니다.
- ❸ "기준"에 "0.05"를 입력합니다.
- ④ "기준값 이하"를 체크합니다.

등위면 보이기 기능을 이용하여 유속이 낮은 부분을 확인할 수 있습니다. 유속이 낮은 구간은 정체점이 발생할 수 있으며 낮 은 부분이 작아질수록 혼합이 잘 된다고 판단할 수 있습니다.

해석 결과 모음

