

팬 경계조건

FAN BC(FAN Boundary Condition)

1. Abstract

팬(Fan)이 설치된 유동장을 해석하기 위해서 좌표계 이동 또는 요소망변형 등을 이용하여 팬을 모델링을 할 수 있는데, 이는 모델링과 해석에 있어 많은 노력과 시간이 소요됩니다. 팬 경계조건을 이용하면 복잡한 팬의 형상을 단순화하여 모델링이 가능하게 되므로 모델링 시간이 많이 단축되며, 팬 성능곡선을 사용하여 팬의 유량을 자동으로 계산할 수 있습니다. 다양한 목적으로 팬을 사용하는 시스템의 설계 단계에서 팬 경계조건은 유용하게 활용될 수 있습니다.

2. Technology 배경

팬이 장착된 제품의 유동해석을 수행하기 위하여 팬을 모델링 하는 여러 가지 방법들이 있습니다. 가장 정밀한 방법은 그림 1(a)와 같이 팬을 실제 형상대로 모델링 하여 해석하는 슬라이딩 벽면 경계조건이며, 팬의 정확한 유량을 알고 있다면 그림 1(b)와 같이 팬을 간단한 유체체적으로 모델링 하여 입구단 유량 경계조건을 적용할 수 있습니다.

(a) 슬라이딩 벽면 경계조건

(b) 입구단 유량 경계조건

위 방법을 사용하여 해석을 수행하기 위해서는 블레이드의 회전수 및 유량정보를 알고 있어야 하지만, 설계 단계에서 이와 같은 정보를 정확히 파악하는 것은 불가능하므로 설계 단계에 적용하기에는 부적합한 해석기법이라고 할 수 있습니다.

그림 1 다양한 팬 해석 방법

MIDAS

표 1 팬 해석에 활용되는 방법의 장단점	및	적용성	
------------------------	---	-----	--

경계조건	장점	단점	적용성
슬라이딩		대규모 요소망 필요	
벽면	정밀한 팬 성능 해석	과도한 계산 시간 소요	팬 성능 해석 적합
경계조건		정확한 회전 정보 필요	
유량 입구단	간단한 모델링	저하히 오랴 저너 피스	시스테 개베 쉐서 저하
경계조건	강건한 수렴성	경확한 유당 경모 필요	시스템 데럴 애석 적합

팬 경계조건은 그림 2 와 같이 팬을 간단한 유체체적으로 모델링하고, 팬 제조사가 제공한 팬 성능곡선을 입력하여 팬의 유량을 자동으로 예측할 수 있는 방법입니다.

이 방법은 설계단계에서 활용하기에 적합한 방법으로서, 단순한 모델링으로 사용성이 매우 편리합니다.

그림 2 팬 경계조건 개념

3. Technology 이론 소개

3-1.팬 성능곡선

모든 팬은 압력과 유량의 관계로 이루어진 성능곡선을 가지고 있습니다. 그림 3(a)와 (b)는 특정 팬의 성능곡선과 시스템 저항곡선을 보여주고 있습니다. v 축은 정압으로 팬이 설치된 시스템의 배압(압력저항)을 뜻하며, x 축은 유량을 나타냅니다. 대부분의 팬은 시스템의 압력저항이 높으면 유량이 작아지는 특성을 보인다. 시스템의 저항은 유량이 많아질수록 커지게 되는데 고저항 시스템의 경우 저항곡선의 기울기가 급격히 증가하며, 저저항 시스템의 경우 기울기가 완만합니다. 식 (3.1.1)과 같이 시스템 저항은 유량의 제곱에 비례합니다.

$$P_s = k \times (flow rate)^2$$
(3.1.1)

팬의 운용점(Operating Point)은 팬의 성능곡선과 시스템의 저항곡선이 평형상태를 이루는 지점에서 결정되며, 그림 3(c)와 같습니다.

시스템의 저항은 시스템 형상에 의해 영향을 받으므로 시스템을 모델링할 때 그 형상의 복잡도에 따라 결정됩니다. 추가적으로 팬의 성능곡선을 해석에 반영하면(입력하면) 정확한 팬의 작동점과 유량을 예측할 수 있습니다.

그림 3 (a)팬 성능곡선 (b)시스템 저항곡선 (c)작동점

3-2. 팬의 종류와 모델링

각종 시스템에 활용되는 팬의 종류는 대략 다음과 같이 세 가지 종류입니다.

① 축류팬

축류팬은 시스템 냉각에 가장 많이 활용되는 팬입니다. 팬의 축과 유체의 흐름 방향이 일치하며, 저저항 환경에서 고용량의 풍량을 만들어 냅니다. 축류팬은 팬 경계조건 적용 시 그림 4 와 같이 간단한 형상의 유체체적을 만들고 입구면에 경계조건을 주어 팬을 단순화할 수 있습니다.

2 Radial Blower

래디얼 블로워의 경우 입구 또는 출구에 팬 경계조건을 줄 수 있습니다. 그림 5 는 입구부에 팬 경계조건을 설정한 경우입니다.

③ Centrifugal Blower

원심 블로워의 경우 입구에 팬 경계조건을 주는 것이 바람직합니다. 출구부에 팬 경계조건을 주는 경우 입구부에서 균일한 유동장이 형성되지 못하기 때문에 실제 팬과 다른 유동장이 형성됩니다.

3-3.팬의 설치와 모델링

팬이 시스템에 설치될 경우에 총 3 가지 종류의 팬 경계조건이 있습니다. 입구팬(급기팬), 출구팬(배기팬) 및 내부팬이 그것입니다. 입구팬이나 출구팬은 그림 7 과 같이 팬 유체체적을 모델링할 수도 있고, 아니면 팬의 입구부만 단순 면으로 모델링할 수 있습니다.

그림 7 입구팬/출구팬의 모델링

내부팬의 경우에는 그림 8 과 같이 모델링이 가능합니다. 별도의 팬 유체체적을 만들지 않을 경우에는 박판기능(Thin Wall)을 이용하여 모델링이 가능합니다.

3-4.팬 경계조건 사용 시 주의사항

팬 경계조건 사용 시 다음 사항을 주의하여야 합니다.

 팬 경계조건은 시스템 저항이 낮을 경우 수렴성이 나빠집니다. 모델링 시 단순화 등으로 시스템 저항이 낮아질 경우 수렴성이 나빠질 수 있습니다.
 이때는 시간간격(Time Step) 조정 등 세심한 주의가 필요합니다.

팬 성능곡선을 입력하는 방식은 그림 9 과 같이 유량 vs 압력과 • 속도 vs 압력 두 가지 방법으로 입력할 수 있습니다. 속도 vs 압력 곡선을 사용할 경우 하나의 팬 경계조건으로 여러 개의 팬을 동시에 적용할 수 있습니다. 반면 유량 vs 압력 곡선을 사용할 경우 팬 마다 각각 독자적인 팬 경계조건을 작성해야 합니다. (그림 10 참조)

그림 10 다중 팬 경계조건 주기

TIP 다중 팬 경계조건 주기 - 동일한 팬이 여러 개 장착될 경우 속도vs압력 성능곡선을 활용하면 하나의 경계조건으 로 처리할 수 있습니다.

4. Technology 사용법

4-1. 예제 설명

예제는 그림 11 과 같이 외부팬과 내부팬이 설치된 간단한 통신기기입니다. 이 예제를 통해서 외부팬과 내부팬의 설정 방법을 설명하고, 어떻게 해석에 적용하는지 알아보도록 합니다.

그림 11 팬 경계조건 주기 예제

예제에 사용되는 팬의 성능은 다음 표와 같습니다.

표 2 팬 성능곡선

열전달해석은 수행하지 않고, 유동해석만 수행하도록 합니다. 유체체적은 그림 12와 같습니다.

그림 12 유체체적

본 예제는 정기교육을 이수하신 분을 기준으로 작성되었습니다.

4-2. 예제 따라하기

4-2-1. 해석조건 설정

- ❶ 상단 메뉴의 "새로 만들기"를 클릭합니다.
- 😢 "모델 종류"에서 "3차원/일반모델"을 선택합니다.
- 🖲 "단위계"를 N-m-J-sec로 설정합니다.

🙆 "확인"을 클릭합니다.

🔕 🗅 🖉 🖯 🖆 🖄 🖛 🔺 🕫 🕬	midas NFX - [시작페이지]	- 🗆 ×
요소망 구조 정적해석	구조 동작하석 유동해석 해석 결과분석 도구 사용모드 * 스	타일 *배경 *언어 * 🎯 🗕 🗗 >
 ● 전후 <	응 경크라고 ☆ 사용자정의 수식 호간 변화 값 스보통 방상 값 근사모통 방상 값 관리고 값 수상 가장의 수식 호간 변화 값 스보통 방상 값 관리고 값 수상 가장의 수식 호간 변화 값 스보통 방상 값 관리고 값 수상 가장의 수식 호간 변화 값 스보통 방상 값 관리고 값 수상 가장의 가장 관리 것 수상 가장	
:* ⊡ ⊕ . : Q ⊡ Q Q C C		世 吗。 井 彩,: 翔 "
모델	·× 『애석소건설성 · · · · · · · · · · · · · · · · · · ·	
방목 번호 석상 ② 세작업 ④ - 〈 32五개 - 「자-〈 성종방왕 - ○,-〉 관측시점 ○,-〉 데이엄 ○ (- 제료 ○ - 10)임 ○ (- 제료 ○ - 10)임	프로젝트명 당당자 설명 모델 종류	IN CONTRACTOR
 ● ▷● ○● 기하정상 ● ○● 오소망제어 ● ○● 오소망 ● ● ● ○ 조속 ● ○● ○ 조속 	· ● <u>2차원/일반모델</u> ○ 2차원모델 ○ 축대칭	
속성장 👻		Z V
▷ 일반	단위계	► * ×
	> ^{A0} > #조	n v J v sec v .

4-2-2. 기하형상 제작

<기하형상 불러오기>

- ❶ "형상"탭 > "CAD 파일"리본메뉴 > "불러오기"를 클릭합니다.
- 😢 배포된 "tech note cad 팬 bc.X_T" 파일을 선택합니다.

📵 "열기"를 클릭합니다.

0 0 0 0 0 0 0 0 0 0 0 0	Ŧ		midas NFX - [NFXD2]			- 🗆 ×
🔰 🚺 월상 요소망 구조 정적해	석 구조 동적해석 유동해	석 해석 결과분석 도구			사용모드 * 스타일	: "배경 "언어 " 🥝 🗕 🗗 🗙
응 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전 전	전 슬리드 선 전	응 수정	상위형상 하위형상 형상검사 자원수 변경	간학화 자동 유동영역 중립면 연결 주물 주물 도구	48 48	
: 🦻 🔒 🗸 : 🔍 🔯 🚺 CADIH	일 불러오기				×	₩ ₩ # @ . 18 .
모델 찾는	위치(I): 🔁 CFD테크노트 -	편경계조건 🗸	G 🛊 🖻 🗔 -			
항목 🛞 새 작업	이름 î tech note cad F	an bc.X.T	수정한 날짜 2014-10-02 오후 2:59	유형 X_T 파일	크기 219KB	End of the second secon
····································	tech note cad	₫bc.X_T	2014-10-02 오후 2:59	X_T 파일	219KB	
·····································	l D					
	12					
·····································						\searrow
·····································					3	\searrow
	파일 이름(N):	tech note cad 팬bc			< 열기(0)	
비트워	크 파일 형식(T):	Parasolid (9 to 34) Files (*,x_t:*,	xmt_txt:+,x_b;+,xmt_bin)		⊻ 취소	Z
속성장		이외기 전용으로 열기(R)				
▷ 일반 형산소정		○ 24 = 0 = 21		(H QT(±17)		KK
			- 언제포 글의 에식 3	미고 뉴지이지 미리즈 미전츠	(D 1147.7)	\sim
	39 1	💹 오차자동계산 0.0001	0.84	29 or 8 12 12 14	[]에여파인	
3 6 8 3	3 7 2		[] 기존세포			Þ
형상수정	수준 레벨 1 (보통)	✓ 대상모델의 길이단위 mm	~	불러오기옵션	모두초기화	₩ # ×
	> Copyright (C) S > 라이선스가 인증! > 유지보수 기간이 > 기하형상 물러오:	INCE 2007 MIDAS Information Tecl 리었습니다. 936일 당았습니다. 기을 완료하였습니다. [tech note cad	nnology Co., Ltd. ALL RIGHT 편bc.X_T]	S RESERVED.		
		<: -0,0735~0,10051 Y: -0,0065~0,09	1458 Z := U, 136~- U, U9799 G :	I N:U E:U	N v m	✓ J ✓ sec ✓

<면 만들기>

- 🛈 "형상"탭 > "면과 솔리드"리본메뉴 > "면 만들기"를 클릭합니다.
- 😢 내부팬 조건을 주기 위한 면을 생성합니다. 총 8개의 선분을 선택합니다.
- 🖲 "확인"을 클릭합니다.

	· · · · · · · · · · · · · · · · · · ·							
	▶ a. ∓		mida	is NFX - [NFXD2]			-	
월상 요소방 구소 성	성석해석 구소 동석해석	유통해석 해석 설	과문석 도구			사용모드 * 스타일 *	배경 * 언어 * 🥨	- 6 ×
열러오기 내보내기 작업평면 점 CAD파일 평성	선 면 슬리드 산 양 성성	년 알리드 추출 명상 수정	이동 스케일 투영	상위형상 하위형상 차원수 변경	항상검사 간략화 자동 연결	🚉 🗃 🗸 유동영역 증립면 측정 추출 추출 태구		
SALQQ QCC	C+HLL		→ ↑ ↓ ┖ 기 15	V M · M · 6	0.00.00	回, i ## 中 j# j9	/ ● □ ↓ ↓ ◎ .	. 🕅
모델	• • ×		21.00				I WOULD IN THE OWNER	
환용 변호 ② 세 작업 ③ 사 각 장프게 	44 20 0 0.02						× ۲×	
	4 🧔 NÐ	D2 ×						Þ
	출력창						₩ Ü	×
	> midas NFX 20 > Copyright (C) > 라이선스가 인 > 유자보수 기간 > 기자평상 플레) > [실행위쇼) CA > [다시실행] CA > 작업 프로젝트	13R1 (64bit) SINCE 2007 MIDAS Informa 되었습니다. 936일 남았습니다. 기를 완료하였습니다. [tech i) 파일 불러오기) 파일 불러오기 + 자동저장기능으로 인하여 저는	tion Technology Co., l note cad 권bc.X_T] 장되었습니다.	td. ALL RIGHTS RES	ERVED.			
		X: -0,0735~0,10051 Y: -0,0	0065~0,09438 Z:-0,136-	~-0,09799 G:2 N:0) E:0	N v m	√ J √ sec	v

다음 그림과 같이 면이 생성된 것을 확인합니다.

4-2-3. 재료·특성 정의

<재료 정의>

- 📵 "요소망"탭 > "재료/특성"리본메뉴 > "재료"를 클릭합니다.
- 包 "생성"옆 화살표 클릭 > "유체(유동해석)"을 선택합니다.
- 🖲 "AIR_25'C"를 선택합니다.
- 🙆 "확인"을 클릭합니다.
- 🟮 "닫기"를 클릭합니다.

All	◇ 유체 (유동해석)				
FRESH_WATER_0'C	유통				
FRESH_WATER_50°C	모델	비압축성			
FRESH_WATER SEA_WATER	질량밀도	1.1845	kg/m³	없음	
AIR 0°C	일반화된 뉴턴 유체				
AIR_50 C	○ 점성	1.8444e-005	kg/(m·sec)	없음	~
OXYGEN_25°C	○ 비뉴턴 점성			상세정의	
NITROGEN_25°C	0.5181	0.02907	ka (mal	0.9	
CARBON_MONOXIDE_25°C CARBON_DIOXIDE_25°C	*25	0.02097	kg/mor		
WATER_VAPOR_25°C ARGON_25°C	#변상택	0	rv/m	10	`
HYDROGEN_25°C	압축률	0	sec²/m²	없음	
FLUORINE_25°C	가속도장				
AMMONIA_LIQUID AMMONIA_VAPOR_25°C	Tx	0	m/sec ²	없음	~
SULFUR_DIOXIDE_25 °C METHANE_25 °C	Ту	0	m/sec2	없음	
ACETYLENE_25°C ETHANE_25°C	Tz	0	m/sec ²	없음	
PROPANE_25°C PROPYLENE_25°C	9				
ETHYLENE_25°C GLYCERIN	419 119	1006	J/(kg·[T])	없음	
GASOIL_LIQUID	저도음	0.0242	W/(m·[T])	었음	
DIESEL_LIQUID	HOE			0.0	
ETHYL_ALCOHOL_LIQUID ETHYL_ALCOHOL_VAPOR_25°C	THE	0	W/m 3	***	
METHYL_ALCOHOL_LIQUID METHYL_ALCOHOL_VAPOR_25`C	열원	0	wym.	28	
ETHYLENE_GLYCOL BENZENE_LIQUID	물질 이송				
BENZENE_VAPOR_25°C	확산계수	2.82e-005	m²/sec	없음	`
TOLUENE_LIQUID	24	0	1/sec	없음	
NITROUS_OXIDE_0 C	복사				
TETRAFLUOROMETHANE_25°C	흡수계수	0	1/m	없음	```
NITROGEN_TRIFLUORIDE_25°C	산란계수	0	1/m	없음	
SULFUR_HEXAFLUORIDE_25°C	산란 위상황수			동방성	
	굴절률	0			
		-			

- <특성 정의>
 - 📵 "요소망"탭 > "재료/특성"리본메뉴 > "특성"을 클릭합니다.
 - 🙋 "생성"옆 화살표 클릭 > "3D..."을 선택합니다.
 - 🔒 "3D 유동해석"탭을 선택합니다.
 - ④ 이름에 "일반유동"을 입력합니다.
 - 🟮 재료를 "2:AIR_25'C-1"로 선택합니다.
 - 🙆 "확인"을 클릭합니다.

4-2-4. 요소망 생성

<크기지정 - 내부팬>

- ❶ "요소망"탭> "요소 생성제어"리본메뉴 > "시드제어"를 클릭합니다.
- 😢 내부팬과 방열핀 부위의 선분들을 선택합니다.
- 🔒 "분할크기"를 "0.001"로 입력합니다.
- ④ "적용"을 클릭합니다.

유동장이 복잡할 것으로 예상되 는 방열핀과 내부팬 부위에 요 소망을 집중시켜 줍니다. 팬 통 로에는 8개에서 10개의 Layer가 형성되어야 합니다.

현재 내부팬의 통로는 7.5mm이 므로 1mm로 크기지정을 하면 8개 정도의 layer가 형성됩니다.

- <크기지정 출입구> 출입구 부위의 선분들을 선택합니다.
 "분할크기"를 "0.001"로 입력합니다.
- 🟮 "적용"을 클릭합니다.

다음 그림과 같이 크기지정이 되어 있는지 확인합니다.

<요소망 생성>

- ❶ "요소망"탭 > "생성"리본메뉴 > "3D"를 클릭합니다.
- 😢 "모델"창 > "기하형상"트리에서 유체체적을 선택합니다.
- ❸ "크기"를 "0.002"로 입력합니다.
- 🙆 ">>"를 클릭합니다.
- 😉 "내부 면"을 체크하고, 생성한 면을 선택합니다.
- 🜀 "두께방향 최소분할수 지정"을 체크하고, 최소분할수에 "3"을 입력합니다.
- 🕖 "틈새 절점 강제 생성"을 체크합니다.
- 🔞 "확인"을 클릭합니다.
- 🤨 "확인"을 클릭합니다.

대략 60만여 개의 요소망이 생성됩니다. 절단모델 기능을 이용하여 요소망의 품질을 시각적으로 검사하도록 합니다.

4-2-5. 경계 조건 입력

- <팬 성능곡선 생성>
- 『유동해석" 탭 > "물성/좌표계/함수"리본메뉴 > "함수" > "팬곡선 함수"를 클릭합니다.
- 🩋 "이름"을 "외부팬"으로 입력합니다.
- 📵 유량과 압력을 입력합니다.(표2 참조)
- 🙆 "확인"을 클릭합니다.
- 🟮 ~ 🕖 앞의 과정을 한번 더 반복하여, cpu 팬의 성능곡선을 생성합니다.

- <입구팬 경계조건>
- ❶ "유동해석"탭 > "일반 유동해석"리본메뉴 > "입/출구단"의 "팬"을 클릭합니다.

- 🟮 대상종류를 "면"으로 선택합니다.

- 팬 종류를 "팬입구"로 선택합니다.
- 🕖 "적용"을 클릭합니다.

다음과 같이 입구팬 경계조건이 설정되었는지 확인합니다.

입구팬을 선택하면, 급기팬이 되고, 출구팬을 선택하면 배기 팬이 됩니다.

<내부팬 경계조건>

- 내부팬을 위해 생성한 면만 보이게 합니다.
- 왿 "내부팬"탭으로 이동하고 "이름"을 "cpu 팬"으로 입력합니다.
- 🖲 "내부면"을 선택합니다.
- 🕘 "면"을 선택합니다.
- 6 내부팬의 면을 선택합니다.
- 🜀 팬 곡선으로 "cpu 팬"을 선택합니다.
- 🕖 "미리보기" 버튼을 클릭하여 화살표의 방향을 확인합니다.
- 🔞 "확인"을 클릭합니다.

다음처럼 팬 경계조건이 제대로 설정되었는지 확인합니다.

<출구 경계조건>

- ❶ 내부팬 면은 숨기고 솔리드만 보이게 합니다.
- 😢 "출구단"을 클릭합니다.
- 📵 종류를 "면"을 선택합니다.
- ④ 출구부 면 8개를 선택합니다.
- 🟮 "확인"을 클릭합니다.

다음 그림처럼 출구단이 제대로 설정되었는지 확인합니다.

<벽면 경계조건>

- 솔리드만 보이게 합니다.
- 🙋 "벽면"을 클릭합니다.
- 🟮 종류를 "면"을 선택합니다.
- 🕘 "무차원벽면거리적용"을 선택합니다.
- ⑤ 드래그하여 모든 면을 선택합니다. (116개 선택)
- 🙆 입구팬 면을 다시 한번 클릭하여 벽면을 해제합니다.

 ⑦ 출구단 면을 다시 한번 클릭하여 벽면을 해제합니다.

 ⑧ "확인" 버튼을 클릭합니다(107 개 대상).

4-2-6. 모니터링 포인트 정의

<입구팬과 출구 모니터링 포인트>

- ❶ 요소망만 보이게 합니다.
- 😢 "결과모니터링"을 클릭합니다.
- 📵 "입구팬"의 임의의 절점을 선택합니다.
- 🕘 "총 속도" 선택합니다.
- 🖲 "적용"을 클릭합니다.
- 🜀 마찬가지로 입구팬 절점 "압력"에 적용

❼~⑧ "총속도"를 체크하고, 출구에 절점을 하나 선택한 후 확인을 클릭합니다.

모니터링 위치는 값의 확인이 필요한 중요한 부분으로 선택합 니다. 모니터링을 지정하면 *.grf 파일에 매 step마다 저장됩니다.

<내부팬 모니터링 포인트>

- 📵 "요소 보이기"를 클릭합니다.
- 🙋 "대상선택"을 클릭합니다.
- 🖲 드래그하여 내부팬의 절반이 포함되도록 요소를 선택합니다.
- 🙆 "보이기"를 클릭합니다.

- 😉 "결과모니터링"을 클릭합니다.
- 🙆 내부팬 면에 절점을 하나 선택합니다.
- 🕖 "총속도"를 체크하고 "적용"을 클릭합니다.
- 🔞 마찬가지로 "압력"을 모니터링 해줍니다.
- 🤨 "모든 요소 보이기"을 클릭합니다.

MIDAS

4-2-7. 해석 케이스 정의

- 📵 "정상"을 클릭합니다.
- 😢 "이름"에 "CASE1"을 입력, "해석종류"에 "정상상태 유동해석" 선택합니다.
- 📵 "해석제어"를 클릭합니다.

- ④ "시간간격"을 0.001 초로 입력합니다.
- ⑤ "시간스텝개수"를 500 으로 입력합니다.
- 🜀 "스텝간격"을 10으로 입력합니다.

반 모듈정보 파라미	티		
모듈			
☑ 일만규종			
- 2건2			
이 고제 물건물	고그 모두		
반복계산	(4)		
시간간격	0.001	sec	
시간스럽개주	-(5) 500		
쇠내만복횟수	3		
수렴기준/오자	0		
시간 일치 진행	□ 새시작		
유동-이류 분할해석	수렴기순/오자		0.001
결과출력			
결과출력 시작스텝	1 스텝간:6		10 Step
결과출력 시작스텝 	1 스텝간:		10 Step
결과출력 시작스럽 	1 스텝간(6 일생성		10 Step
결과출력 시작스럽 중간단계 재시작 파일 물리적 데이터 작동압력	1 스럽간 (6 일생성 101325	N/m²	10 Step
결과중력 시작스럽 중간단계 재시작 파 물리적 데이터 작동압력 중력 빅터	1 스팸간 (C 월생성 101325 0, 0, -1	N/m²	10 Step
결과출력 시작스럽 물리적 데이터 작동압력 중력 빅터 대정 공면	1 △딸간() 월상성 101325 0, 0, -1	N/m²	10 Step
결과출력 시작스템 물리적 데이터 작동압력 중력 빅터 대정 평면 	1 스텔간 (C 월상성 101325 0, 0, -1	N/m ²	10 Step
결과충력 시작스럽 중간단계 재시작 파1 물리적 데이터 작동압력 중력 벽터 대장 광면 문면23 X - 위지 공면31 Y - 위지	1 실영성 101325 0, 0, -1	N/m ²	10 Step m m
결과충력 시작스럽 중간단계 재시작 파일 동리적 데이터 작동압력 중력 벽터 미정 광면 미정 광면	1 음양강 101325 0, 0, -1	N/m²	10 Step m m m
절과충력 - 중간단계 재시작 파일 물리적 데이터 작동압력 - 중력 빅터 - 명면23 X - 위지 - 명면31 Y - 위지 - 명면12 Z - 위지	1 스탠간 ()	N/m²	10 Step m m m
절과충력 시작스럽 중간단계 재시작 파 동리적 데이터 작동압력 국국 빅터 마정 광면 고 방면23 X - 위지 고 방면31 Y - 위지 고 방면12 Z - 위지	1 스탠간 (N/m²	10 Step m m m

🕑 "모듈정보" 탭에서 난류모델을 2 차식 k-ε으로 선택합	니다.
-----------------------------------	-----

		L Z	급 난류 올	션		
) #LT 0181	A174					
] 삼포립틱] 저스아 서	23				0, 0, 0 m	
] 영국립 2] 보으도 제	e e					
J ⊤ π ≭ ~	12					
요소망변형	ZA (-		
사용자 정의	임필드) ^r	중시성의 1	1- 24	0 = + 1	
T1		0	m	없음	~	10
T2		0	m	없음	~	10
Т3		0	m	없음	~	100
유수면레별 질량보존 이해제 경계면 선택 열전달해석 입압력과 점] 일전효과	이적용 경도 성에너지 적용 적용	() 중분 고정	ŝ	0 kg	/sec
		I	파티를 해석			

⑧ "파라미터" 탭에서 전역 CFL 수를 0.002 로 입력합니다.
 ⑨ "확인"을 클릭합니다.

수지정석 파라미터 (8) 전역 CFL 수	모듈 정보 파라미터		~
전역 CR 수 0.000 중분 원화 계수 21 일전달해석 파라미터	치해석 파라미터		8
물론 완화 계수	역 CFL 수		0.002
반류 정상비 22 영전달해석 파라이터	분 완화 계수		1
열전달하석 파라이터 _ 절대 운도 스케일 273.16 ♥ 스테란-봉조만 상수 5.6696e-008 _ 각 구적법 6 ~ _ 복사계산 간격 5	류 점성비		25
고대 운도 스케일 273.16 값 스테만-봉조만 상수 5.6696e-008 각 구적법 6 복사체산 간격 5	전달해석 파라미터		
 ▲ 스테란·볼프만 상수 5.6696e-000 W/(m²·[1]⁴) 4 구적법 6 ~ 5 ~ 	절대 온도 스케일	273.16	
□ 각 구적법 6 ∨ □ 복사계산 간격 5	스테판-볼쯔만 상수	5.6696e-008	W/(m ² ·[T] ⁴)
□ 복사계산 간격 5	각 구적법	6 ~	
	복사계산 간격	5	

4-2-8. 계산 실행 및 확인

<해석실행>

- ❶ "해석"탭을 클릭합니다.
- 🙋 "실행"을 클릭합니다.

🖲 CASE1 이 체크 되어있는지 확인한 후 "확인"을 클릭합니다.

<계산 모니터링>

*NORM GRAPH"출력창으로 Norm 값이 0.001 이하로 떨어지는지 확인합니다.
 모니터링 값이 정상상태에 도달 했는지 확인합니다.

모니터링 위치에 따라 정상상태 에 도달하는 시간이 달라집니다. 따라서 해석목적에 맞는 곳에 모니터링을 하고 그 값이 일정 해 질 때까지 반복계산을 수행 해야 합니다.

<입구팬의 총속도와 압력>

<내부팬의 총속도와 압력>

4-2-9. 결과 검토

<단면 속도 컨투어>

[DATA] CASE1, 정상상태 유동해석 (필수), CFD : INCR=0051 (TIME=0.0298705), [UNIT] N, m

MIDAS

<속도 등위면>

- 📵 "특정결과면보이기"을 클릭합니다.
- 🙋 임의의 해석 스텝 총속도를 더블클릭 합니다.
- ⑧ 기준값에 1을 입력합니다.

