

김윤태 | 부경대학교

연약지반: 지반특성과 거동 (낙동강 대심도 연약지반 중심으로)

MIDAS SQUARE 공학 기술강연

06 요약

- leaching효과
- 연직배수재의점소성압밀특성 (변형률 속도의존적인거동)
- 대심도 연약지반의 침하량을 어떻게 산정할 것인가?
- 현재 침하량 예측은 정확한가?
- 연약지반허용잔류침하량기준 설정 필요!
- * 해석대상지반의 특성을 고려한해석 시스템을 구축
- * 현장지반을대표하는지반물성치 산정
- 05 연약지반 재해를 방지하기 위해 어떻게 해야 할까요?
- 흙막이 벽체 붕괴 등
- 침하, 부동침하, 사면파괴, 도로침하변형
- 04 연약지반에서 발생하는 재해 종류는 어떤 것이 있나?
- 03 연약지반의 일반적인 거동 특성은?
- 02 우리나라에서 대표적인 연약지반은?
- 연약지반 판정
- 01 연약지반은 어떤 지반인가요?

CONTENTS

연약지반은 어떤 지반인가요?

• The Leaning Tower of Pisa

I. 연약지반

- ・구조물에 대해 안정성을 만족하지 못하는 경우에 연약지반으로 판정
 - 연약지반 설계일반 (KDS 11 30 05 : 2021)
- ・연약지반 판정기준

구 분	점성토 및 여	사질토 지반	
층두께	10m 미만	10m 이상	-
N값	<mark>4</mark> 이하	<mark>6</mark> 이하	<u>10</u> 이하
q _u (kN/㎡)	<mark>60</mark> 이하	<u>100</u> 이하	-
q _c (kN/㎡)	<mark>800</mark> 이하	<u>1,200</u> 이하	4,000 이하

- ・연약지반 종류
 - ✓ 연약한 점토, 유기질토, 팽창성 점토(expansive clay), 화산회질 점성토, 예민 점토(quick clay)
 - ✓ 느슨한 사질토, 붕괴성 흙(collapsing soils)
- 지반자체의 강도와 가해지는 외력의 상대적인 크기 및 재하조건, 구조물의 설계조건, 중요도 등에 의존하여 연약지반을 판별해야 함.

우리나라에서 대표적인 연약지반은?

II. 우리나라에서 대표적인 연약지반은?

● 낙동강 하구 : 부산점토(Busan Clay) –대심도 연약지반

부산 점토(Busan clay) 지층구조

Ⅱ. 우리나라 대표 연약지반

- Busan clay has thickness in general 20 to 40m or more greater than 70m, especially in the mouth of the river

낙동강 대심도 연약지반

Ⅱ. 우리나라 대표 연약지반

깊이별 지반 특성 (녹산)

(Chung et al., 2001)

11

qt (CPTU)와 Su (field vane test) 변화

부산점토와 해외 유명 점토를 비교하면 ?

Ⅱ. 우리나라 대표 연약지반

부산점토의 대표적인 특징

- 오랜 기간 동안 낙동강 하구 유역에서 해수와 담수의 영향을 받아 상당히 두터운(significant thick) 퇴적층이 형성되었고,
- 해수면의 변화 등으로 인하여 퇴적층은 매우 불균질(heterogeneous)하며,
- 압축성은 해외 유명점토보다는 다소 적지만 서해안 점토보다는 훨씬 크다.
- 또한 해수의 이온 등의 영향으로 구조화된 정규압밀지반(structured and normally consolidated soil)이라고 할 수 있다.

	구 분	내 용	비고
	두 께	상당히 두텁다(significant thickness)	thick clay
	성 분	불균질(heterogeneous)	heterogeneous clay
	압축성	큰 침하(large settlement)	soft clay
흙구조와 응력이력		구조화된 정규압밀지반(structured and normally consolidated soil)	young clay

연약지반의 일반적인 거동 특성은?

Ⅲ. 연약지반의 일반적인 거동 특성은?

이론적인 간극수압의 거동은?

Ⅲ. 연약지반 거동 특성

시간에 따른 전응력, 간극수압 및 유효응력의 변화

Saint Alban의 시험성토:

(a) piezometer 설치위치; (b)성토하중에 대한 계측된 과잉간극수압(Leroueil et al. 1978)

III. 연약지반 거동 특성

Ⅲ. 연약지반 거동 특성

- · Saint Alban의 초기 성토하중에 대한 계측된 과잉간극수압
 - ✓ 시공초기에 성토하중보다 적은 간극수압이 유발
 - 과압밀상태 지반에서 부분적인 배수 (압밀)
 - 불포화 상태

시공동안에 계측된 침하량과 횡변위

• 연직 체적 변형량(V_v) > 횡체적 변형량(V_h) ✓ 초기 점토 지반은 완전 포화상태가 아닐 뿐만 아니라 성토하중에 대하여 비배수 거동을 하지 않음

(Johnston, 1973)

III. 연약지반 거동 특성

· 점소성 거동특성 (viscous behavior) 고려해야 함

연약지반에서 발생하는 재해 종류는 어떤 것이 있나?

Ⅳ. 연약지반에서 유발될 수 있는 재해 종류는 어떤 것이 있나?

- ・침하 (부등침하, 변형)
- ・사면파괴 (성토사면, 절토사면변형)
- ・흙막이 벽체 붕괴 등

침하 (부등침하, 변형)

|||. 연약지반 재해 종류

성토과정에서 발생한 연약지반의 파괴 사례

IV. 연약지반 재해 종류

도로성토에서 발생한 연약지반의 파괴 사례

Ⅳ. 연약지반 재해 종류

지반재해의 징후 – 계측결과로 판단

- ・ 과도한 간극수압 발생
- ・ 과도한 침하 발생
- ・ 과도한 횡변위 발생
- ・균열 (지반, 벽체 등)
- ・누수

어떻게 해야 할까요?

연약지반 재해를 방지하기 위해

V. 지반재해를 방지하기 위해서는 어떻게 해야 할까요?

V.1 현장지반을 대표하는 지반특성 [물성치] 산정

- ✓ 시료 교란, 불균질성, 이방성 등
 - 시료교란 영향 최소화
 - 정교한 실내실험
 - 응력수준에 따른 Ca/Cc
 - 현장실험결과와 비교 검토 (통계적 기법 등 적용)

V.2 해석대상 지반의 특성을 고려한 해석 시스템 필요

- √ 현재 침하량 예측은 정확한가?
- ✓ 대심도 연약지반의 침하량을 어떻게 산정할 것인가?
- ✓ 연직배수재의 점소성 압밀 특성 (변형률 속도 차이)
 - 2차압밀에 따른 장기침하량
 - 비선형 압밀해석
 - 2차압밀 동시 고려
 - 점소성 거동 포함
- ✓ leaching 효과

V.1 현장지반을 대표하는 지반특성 산정

· 현장지반을 대표하는 지반물성치의 어려움

- ✓ 시료 교란, 불균질성, 이방성 등
- ✓ 비선형성
- ✓ 응력수준에 따른 C a /Cc 특성

· 지반특성이 대상 지반에 대한 거동을 좌우함 ✓ 연약지반의 모델링

V.1 지반특성 산정

・실내실험 결과와 성토 침하량으로부터 계산된 압밀계수값 비교

Site	c _{vlab} (M²/s)	c _{v in situ} (m²/s)	$\frac{c_{vinsitu}}{c_{vlab}}$	Reference
Skå-Edeby IV	5.0 × 10 ⁻⁹	1.0×10^{-7a}	20	Holtz and Broms (1972)
Oxford (1)			4–57	Lewis et al. (1975)
Donnington			4-7	Lewis et al. (1975)
Oxford (2)			3-36	Lewis et al. (1975)
Avonmouth		**	6-47	Lewis et al. (1975)
Fickton			7-47	Lewis et al. (1975)
Over Causeway			3-12	Lewis et al. (1975)
Melbourne			200	Walker and Morgan (1977)
Penang	1.6×10^{-8}	1.1×10^{-6}	70	Adachi and Todo (1979)
Cubzac B	2.0×10^{-8}	2.0×10^{-7a}	10	Magnan et al. (1983a)
Cubzac C	1.4×10^{-8}	4.3×10^{-7a}	31	Leroueil et al. (1985)
\-64	$7.5 imes 10^{-8}$	2.0×10^{-6a}	27	Leroueil et al. (1985)
Saint-Alban	1.0×10^{-8}	8.0×10^{-8a}	8	Leroueil et al. (1985)
R-7	6.0×10^{-9}	2.8×10^{-7a}	47	Leroueil et al. (1985)
Matagami	8.0×10^{-9}	8.5×10^{-8a}	10	Leroueil et al. (1985)
Berthierville		4.0×10^{-8a}	3–10	Kabbaj (1985)

 시료 교란, 연약지반의 이방성 및 불균질성 등으로 인하여 지반물성치를 정확히 산정하기가 매우 어려움
침하량 산정에 영향을 주는 물성치

- Compression index [△e/△log ♂, Cc]
 ✓ 유효응력 변화에 따른 압밀침하
- Secondary compression index [∠ e/ ∠ log time, C α]
 ✓ 과잉간극수압의 소산이 완료된 후의 소성적인 압밀침하
 - ✓ Mesri 등 (2005) : C α 는 시간에 따라 일정하다
 C α 가 zero가 된다는 어떠한 지질학적인 근거도 없다
 - ✓ Berre와 Iverson(1972), Leroueil(1985), Yin(1999)등 : C a 는 시간에 따라 감소한다
 이차압축에 의한 침하량은 끝이 있다
- · C α /Cc의 관계
 - ✓ Mesri와 Castro(1987): 여러 종류의 흙에 대해서 C a /Cc가 0.02~0.1의 값을 가진다
 ✓ 무기질 점토 : 0.04±0.01, 유기질 점토 : 0.05±0.01

・대심도 연약지반이 경험하는 응력경로

응력상태에 따른 장기압밀시험

- ・부산 신항만 건설현장의 불교란 점토(LTC-1)
- ・ 화전 지역의 불교란 점토(LTC-2)

Consoli- dation test	NO	Loading (kPa) [days]		ਰਸ਼• <u>P1</u> P2 = P1 P2 P1 P2
LTC-1 (o _p =150kPa)	P1	$10[1] \rightarrow 20[1] \rightarrow 40[1] \rightarrow 80[20]$	/oid ratio, e	
	P2	$\begin{array}{c} 10[1] \rightarrow 20[1] \rightarrow 40[1] \rightarrow 80[1] \rightarrow \\ 150[20] \end{array}$		P4
	P3	$\begin{array}{c} 10[1] \rightarrow 20[1] \rightarrow 40[1] \rightarrow 120[1] \rightarrow \\ 200[20] \end{array}$		
$LTC-2 \\ (\sigma_p = 130 kPa)$	P1	$10[1] \rightarrow 20[1] \rightarrow 40[1] \rightarrow 80[20]$		
	P2	$10[1] \rightarrow 20[1] \rightarrow 40[1] \rightarrow \underline{130}[20]$		•
	P4	$\begin{array}{c} 10[1] \rightarrow 20[1] \rightarrow 40[1] \rightarrow 80[1] \rightarrow \\ 160[1] \rightarrow 320[20] \end{array}$		

$$\log \sigma'_{p} = 0.045 \log \dot{\varepsilon}_{v} + 2.434$$
$$\log \sigma'_{pc} = \Gamma + C_{p} \log \dot{\varepsilon}_{v} \quad \text{(Kim and Leroueil, 2001)}$$

V.1 지반특성 산정

· 부산점토의 선행압밀하중은 변형률 속도에 의존

✓ 선행압밀하중의 기울기는 Batiscan과 Berthierville 점토의 기울기와 거의 동일

변형률 속도와 선행압밀하중의 선형적인 관계

시간에 따른 이차압축지수의 변화

- · 과압밀영역 : 거의 일정한 값
- · 정규압밀영역 : 미소하지만 점차 감소하는 경향 (bonding, structuration)
 - ✓ 장기압밀특성
- ・이차압축이 시작되어 경과되는 시간(t)을 이차압축이 시작되는 시간(t_{EOP})으로 정규화시킨 값(T_s)에 대한 C *a* 의 변화

V.1 지반특성 산정

압축지수와 이차압축지수의 비

· 과압밀 영역

 $C_{\alpha(OC)} / C_c = 0.006$ $R^2 = 0.8829$

 $C_{\alpha(NC)} / C_c = 0.0363$ $R^2 = 0.9291$

- 변형률 속도에 대한 압밀특성과 장기적인 압밀특성을 파악하기 위하여 낙동강 하구 부산점토를 대상으로 CRS 시험과 장기간의 하중단계 압밀시험을 실시
- · 흙의 응력-변형 거동은 변형률 속도에 의존적이다. 즉, 변형률 속도가 작을수록 압밀침하가 크게 일어날 수 있다
- ・부산점토의 시간에 따른 C_a 의 변화를 살펴본 결과 <u>과압밀영역에서는 거의 일정</u>하고 정규압밀영역에서는 점차 감소하는 경향을 나타내었다.
- 시간에 따른 creep rate는 점차 감소하여 zero에 가까워지며 대수시간에 대한 log^e 는 선형적으로 감소하는 것을 알 수 있다. 이와 같은 결과를 바탕으로 시간이 지남에 따라 이차압축 침하량은 점차 감소함을 알 수 있다.
- · 부산점토의 이차압축지수 특성

 $C_{\alpha (NC)} / C_c = 0.036$

 $C_{\alpha(oc)} / C_c = 0.006$

V.1 지반특성 산정

해석대상 지반의 특성을 고려한 해석 시스템 필요

- ✓ 현재 침하량 예측은 정확한가?
- ✓ 대심도 연약지반의 침하량을 어떻게 산정할 것인가?
- ✓ 연직배수재의 점소성 압밀 특성 (변형률 속도 차이)
 - 2차압밀에 따른 장기침하량
 - 비선형 압밀해석
 - 2차압밀 동시 고려
 - 점소성 거동 포함
- ✓ Leaching(용탈) 효과

· 현재 침하량 예측은 정확한가?

✓ 부산점토에 대한 설계 및 계측 침하량 비교

Site	Thickness of soft clay (m)	Ground improvement method	Height of Embankment (m)	Settlement at design stage (cm)	Measured settlement (cm)
Myungji	15.2-21.2	Pack Drain + Preloading (D=25m)	5.4 5.0-10.0 5.9	106.0 106.0 116.0	171.1 62.2-97.9 82.8-240.9
Shinho	21.0-33.5	Pack Drain + Preloading (D=30m)	2.9-4.6	45.2-124.6	172.6-318.2
Noksan	1.4-59.8	P.B.D. + Preloading (D=28m)	4.3-10.5	70-220	90-450
Yangsan	22.2-34.0	P.B.D. + Preloading (D=28m)	0.9-3.0	218.5	389.5

설계 및 계측 침하량

✓ 계측 침하량이 설계 침하량보다 1.5-3 배를 초과하여 유발되는 경우가 발생

✓ 최근에 설계되어 공사된 B1 현장과 B2 현장의 경우 계측침하량은 설계시 예측 침하량 보다 작게 유발됨
 - 특히 B1 현장의 경우 설계시 침하량은 약 8.1m ~ 8.9m 범위로 평가되었으나 계측침하량은 약 5m ~ 6.5m 범위로 유발
 - 즉 계측 침하량은 설계 침하량에 비해 과소 평가됨

Kansai 국제공항의 예측 및 계측된 침하량과 간극수압

시험성토에서 계측된 간극수압 @Berthierville site

・고전적인 압밀이론으로는 이와 같은 간극수압의 증가를 설명하기 어려움.

대심도 연약지반에서 침하량을 어떻게 산정할 것인가?

기존 해석 방법

✓ 배수재가 설치된 지반의 압밀해석

✓ Barron의 해석 방법(1942,1948)

V.2 해석 시스템

✓ Hansbo의 해석방법(1981)

무처리 지반과 배수재 설치 지반의 침하량 비교

・가정 : 연직배수재의 강성도 무시

Soft clay deposits without vertical drains

Soft clay deposits with vertical drains

무처리 지반과 배수재 설치 지반의 침하량 비교

・무처리 지반과 배수재 설치지반에서 일어나는 공용기간(약 30년)에 침하량은 ?

·가설 A(Hypothesis A)와 가설 B(Hypothesis B)

구 분	Hypothesis A	Hypothesis B		
2차압축 유발 시점	1차압밀이 완료된 후	압밀 전체과정 (1차압밀 동안에도 유발)		
응력-변형률 관계	EOP(end of primary consolidation)에서 유효응력-변형률 곡선은 일정함	압밀기간(시료두께)에 의존		
시료두께의 영향	없음	시료두께가 커지면 침하량 커짐		
침하량 계산	전체침하량=1차압밀 침하량+2차 압밀침하링	수치계산 필요		

· 가설 A(Hypothesis A)와 가설 B(Hypothesis B)

Log time

가설 A에 바탕을 둔 압밀해석

・전체 침하량 = 1차압밀 침하량 + 2차압축 침하량

가설 A에 바탕을 둔 압밀해석

- V.2 **해석 시스템**
- 1차압밀과 2차압밀이 동시에 유발된다는 것이 국제 지반공학회에서 인정되고 있으므로 1차 압밀동안에 일어나는 2차압축을 동시에 고려한 비선형 압밀해석을 수행하는 것이 바람직함

현장과 실험실의 압밀 조건 비교

실험실과 현장에서 변형률 속도의 차이

· 현장 변형률 속도는 실험실에서 수행되는 변형률 속도보다 일반적으로 2-4계(order) 적음 [Leroueil 등, 1996; 김윤태, 2003]

(Kim, 2013)

·특히 부산점토와 같이 대심도 조건에서는 변형률 속도 의존적인 압밀특성 고려가 필요

연약지반 거동에 대한 시간 및 변형률 속도의 영향

• Taylor, 1942; Crawford, 1965; Bjerrum, 1967; Leroueil (1985)

· 응력-변형곡선은 압밀층의 요소 위치 혹은 유발되는 변형를 속도에 의존 · Oedometer test에서 구한 EOP 압밀곡선은 유일(unique)하지 않음

60

Hansbo의 해석적인 해와 비교

• 무처리 지반

· 연직배수재 설치 지반

Q 8

1, 0

압밀도

(김윤태, 2005)

연직배수재가 설치된 지반과 무처리 지반에서 침하량 비교

・가설 A

・가설 B

(김윤태, 2005)

비선형 점소성 압밀 요약

- ・지반의 응력-변형률 거동은 유발되는 변형률 속도에 크게 의존함을 알 수 있음.
- EOP 응력-변형곡선은 유일하지 않고 압밀기간에 의존하므로 일반적으로 가설 A에 의해 계산된 침하량은 현장의 계측 침하량보다 작음.
- · 가설 B가 논리적으로 타당하지만, 압밀계산 과정이 복잡하여 대부분의 설계회사에서는 가설 A를 많이 사용함.
- · 가설 A의 경우, 침하량은 2차압축 계산 시간 차이로 인하여 배수재가 설치된 지반의 침하량이 항상 무처리 지반의 침하량보다 큼
- · 그러나 가설 B를 바탕으로 계산된 침하량은 과잉간극수압이 모두 소산된 이후에서 배수재 설치 유무에 관계없이 같음
- · 연약지반의 압밀침하 거동을 비교적 정확히 예측하기 위해서는 1차압밀동안에 유발되는 크리프
 변형을 포함한 비선형 압밀해석 모델을 압축지수와 2차 압축지수를 사용하여 구해야 함

Leaching effect

피압과 피압대수층이란?

- ·대수층이 점토층과 같은 불투수층 또는 투수계수가 지극히 낮은 상부지반의 영향으로 압력을 받고 있는 상태를 피압(artesian pressure)이라고 하며,
- · 이 때의 대수층을 <mark>피압대수층</mark>이라 함

(서영민, http://slidesplayer.org/slide/11152157/)

· 낙동강 하구 피압(artesian pressure) 분포 현황

Location/site	Elevation (m)	Artesian pressure head (m)	Reference	
화전	48	1.3	Kim et al. (2006)	
	33	3.02	Han and Ryu (1999)	
양산	30.5	3.52		
	37.8	4.04		
부산신항	57	2.96	Huh (2003)	
기더드 바뀌네	26.5	1.35	Busan New Port (1999)	
기╕エ 강파제	40.3	1.57		
조정경기장	34.5	1.58	Daewoo Eng. (2001)	
	34	1.11	Chung et al. (2003)	
신오	43.0	1.2	백승훈(2002)	
낙동강 삼각주	36.0	5.8	정성교 등(2010)	
에코델타시티	54.0	3.4	현대보고서(2019)	

지층구조 및 지화학 특성 @화전

지화학 분석(Geochemical analysis) 결과

장유지역에 대한 지화학적 분석 결과 (류, 2003; 정, 2003a)

Parameters	Natural clay	Leached clay	Remark	Reference
Unit weight, γ (g/cm ³)	1.69	1.57	Decrease	Ismale (1993)
Void ratio, e _o	0.45	0.42	Decrease	Azam (1999)
Water content, W (%)	40.4	41.0		Bjerrum (1954)
Liquid limit (%)	43.4	27.4	Decrease	Bjerrum (1954)
Preconsolidation pressure, σ'_{pc} (kPa)	50	45	Decrease	Ismale (1993)
Compression index, C _c	0.15	0.21	Increase	Nagase et al. (2006)
Swelling index, C _s	0.001	0.015	Increase	Nagase et al. (2006)
Settlement (vertical strain, %)	1.5	4.5	Increase	Kazi and Moum (1972)

Effect of leaching on geotechnical properties

• Comparison of settlements of Drammen clay in Norway (Kazi and Moum, 1972)

a) leaching

b) Secondary settlement

Effect of leaching on physical properties

(Kim and Do, 2010)
Effect of leaching on compressibility of Busan clay

(Kim and Do, 2010)

V.2 **해석 시스템**

© MIDAS IT Co,. Ltd

Leaching effect 요약

• Leaching이 점토지반의 지반특성에 미치는 영향 ✓ e ✓ LL ✓ 선행압밀하중

🗸 Cc 🥕

✓ Settlement 🥕

75

· 우리나라 대표적인 연약지반 ✓ 부산점토

・연약지반 거동특성

✓ 시간의존적인 침하, 간극수압 특성

- 연약지반에서 유발되는 자연재해 ✓ 침하, 부등침하, 사면파괴, 흙막이가시설 붕괴 등
- ・대심도 연약지반의 침하량을 어떻게 산정할 것인가?
 ✓ 현장에서 유발되는 침하량은 1차 및 2차를 구분하지 않는다(가설 B).
 ✓ 응력수준에 따른 C a /Cc (과압밀 상태 = 0.006, 정규압밀 상태 = 0.036)
 ✓ 연직배수재의 점소성 압밀 특성
- ・하부 점토지반의 Leaching effect 고려
 - ✓ e, LL, 선행압밀하중, Cc, Settlement

© MIDAS IT Co,. Ltd

감사합니다.