

MIDAS SQUARE 공학 기술강연

Performance-Based Earthquake Design of Building Structure in Korea 건축물의 성능기반 내진설계

박홍근 | 서울대학교

CONTENTS

04 Nonlinear Analysis Modeling

05 Fiber Model

06 Plastic Hinge Model (Beam, Column, Joint,

07 Application Example

Lecturer: **Hong-Gun Park**

- Professor, Department of Archi. & Architectural Engineering, SNU
- Former Partner in Jeon & Associates
- Ex-President of Korea Concrete Institute (KCI)
- President of Korea Protective Facility Institute (KPFI)
- ACI Fellow (FACI)
- Structural Professional Engineer in Korea
- National Engineering Academic Society in Korea (NEAK) and The Korean Academy of Science and Technology (KAST)

Background • Earthquake design of buildings (ductility design)

Background • Earthquake design of buildings (ductility design)

• Uniform value of R factors according to structure type regar dless of design parameters (building height, strength, etc)

• Verification of performance is required.

© MIDAS IT Co., Ltd

Background

• Earthquake design of buildings (ductility design)

- Uniform value of R factors according to structure type
- Regardless of design parameters (building height, strength, etc)

Background • Equivalent Elastic Design vs Performance-based design

Background • Equivalent Elastic Design vs Performance-based design

Background

• Performance-based seismic design of building structures

- 1st introduced in 2016 in Building Structure Design Code (current KDS 41 17)
- For structures that are difficult to apply conventional elastic design based on Response modification factors (R-factor or ductility factor)
- For important structures that require multiple performance goals
- Guidelines for Performance-Based Seismic Design of Reinforced Concrete Buildings (2021)
	- » detailed procedure of PBSD
- Guidelines for Nonlinear Analysis Modeling for PBSD of Reinforced Concrete Buildings (2021)
	- » detailed modeling technique for nonlinear analysis

Background

• Contents of PBSD Guidelines

- 1. General
- 2. Design Procedure
- 3. Basic Design
- 4. Nonlinear analysis model
- 5. Fiber model
- 6. Plastic hinge model
- 7. Nonlinear Static Analysis
- 8. Nonlinear Dynamic Analysis
- 9. Verification of Performances
- Appendix : modeling examples

Procedure • Basic Design of PBSD **Guidelines**

elastic analysis-based conventional design linear dynamic analysis (response spectrum analysis) response modification factor (R) corresponding to the seismic load resisting system Design strength according to current design codes behavior model (deformation-control, force-control) material stress-strain relationship and member force-

• Nonlinear static and dynamic analysis

deformation relationship curve

- Nominal strength based on actual structural mechanism
- Verification of performance

interstory drift ratio for overall structure behavior

deformation and material strain for deformation-controlled behavior, strength of force-controlled behavior

Nonlinear Analysis Modeling

• Behavior Model

Deformation-controlled behavior : Nonlinear model to estimate deformation demand Force-controlled behavior : Linear model to prevent brittle failure

• Requirement of behavior models to guarantee ductile behavior Deformation-controlled behavior : high deformation (ductility) Force-controlled behavior : high strength with a safety factor \uparrow

(b) Hysteresis model for moment hinge element

Plastic Hinge • Plastic Hinge Model : beams, columns, beam-columns, walls **Model** 무한강성 부재 ------------

Plastic Hinge Model

• Effective Stiffness for elastic region Considering the effect of concrete cracking.

1) Non-prestressed beams

2) η = axial compression ratio, l_s = shear span = 1/2 column height, h = depth of cross section

3): $l =$ beam length $h =$ beam depth

1) Non-prestressed beams

2) η = axial compression ratio, l_s = shear span = 1/2 column height, h = depth of cross section

3): $l =$ beam length $h =$ beam depth

• Definition of Deformation Capacity :

intersection between shear demand and shear capacity $V_n = V_d$

intersection between shear demand and shear capacity $V_n = V_d$

- ε_{cf} , = rebar fracture
- ε_{bl} , = rebar buckling
- ε_{sc} = shear strength degradation

© MIDAS IT Co,. Ltd

Plastic Hinge Model: Beam Simplified modeling parameters available for $\rho_v \ge 0.0015$, $s/db \le 16$, and $L/d \ge 6$

Simplified modeling parameters available for $\rho_v \ge 0.0015$, $s/db \le 16$, and $L/d \ge 6$

(b) RC beams without seismic details

In most cases, plastic beam deformation is accompanied by joint shear damage. Focusing on joints at building perimeters with both joint shear damage and beam damage

In most cases, plastic beam deformation is accompanied by joint shear damage.

ASCE 41 model (Separated model)

Indeper *Py* dependent mode
formation separa
astic deformation deformation separated from beam Independent model of joint shear plastic deformation

PBSD model (Unified model)

Combined behavior of joint shear deformation and beam plastic deformation

• Shear strength model of ACI 318

 V_{in} $\left(=0.083 \gamma \sqrt{f_{ck}} b_{j} h_{c}\right)$

 $V_{jn} = V_c + V_T = \alpha_c \alpha_s f_{ck} b_s h_c + \min (A_h f_{vh}, 0.65 A_s f_v)$ • Proposed model

No specific contribution of shear reinforcement No strength degradation

- α_c = lateral confinement factor (1.0, 2.0, 2.5)
- α_s = deformation degradation factor

$$
b_s = \text{effective width} = \min\left[\frac{b_b + b_c}{2}, b_b + \frac{h_c}{2}\right]
$$

• Joint shear capacity degradation

$$
\boldsymbol{V}_{jn} = \boldsymbol{V}_C + \boldsymbol{V}_T = \alpha_c \alpha_s \boldsymbol{f}_{ck} \boldsymbol{b}_s \boldsymbol{h}_c + \min\left(\boldsymbol{A}_h \boldsymbol{f}_{yh}, 0.65 \boldsymbol{A}_s \boldsymbol{f}_y\right) \qquad \begin{array}{c} \boldsymbol{E}_{\rm II} : \text{for } 3^{\text{rd}} \text{load cy} \\ \text{at } \delta = \pm 3.5 \text{ %} \end{array}
$$

 $0.11 (6 - \beta) (\beta_c + 0.2)$ $100 \gamma_{\rm r} + 1.6$ *c s T*^{\blacksquare \blacksquare \blacksquare \blacksquare} *. .* $\frac{\beta(\beta_c + 0.2)}{\gamma_{x} + 1.6}$ $|\mathcal{Y}_T|$ + 1.0 $- B \cup B_+ + 0.2$ $=\frac{100v_{\pi}+1.6}{100v_{\pi}+1.6}$ acity degradatio
 $h_c + \min(A_h f_{yh}, 0.65A_s)$

a factor for interior jc
 $\frac{3.2}{(1.5.36) \times 10^{14} \text{ J}}$

and the same single single

and the single single single single single single single

and the single single single single **inge**

Joint

ear capacity degradation
 $= \alpha_c \alpha_s f_{ck} b_s h_c + \min(A_h f_{yh}, 0.65A_s f_s)$

degradation factor for interior join
 $-\beta \left(\beta_c + 0.2 \right)$
 $\frac{\beta(\gamma_T) + 1.6}{\log(\gamma_T) + 1.6}$
 $\epsilon_s L$
 $\frac{3 - 5\kappa}{6 - 3h_c/L - 3h_b/H}$ y^2 3-5k **The State of Start Start (18)**
 The Start Start Start Column Joint

For the start Column degradat
 $\mathbf{r} = \frac{0.11(6-\beta)(\beta_c)}{100\gamma_T + 1.6}$

oint shear deform
 $\mathbf{r} = \left(\frac{8}{\beta_T} - \frac{\epsilon_y L}{2h_b}\right)_{6-\frac{1}{2}\Gamma}$ *b c b* **nge**

Joint

and capacity degradation
 $\alpha_e \alpha_s f_{\alpha} b_s h_e + \min(A_h f_{sh}, 0.65A_s f_s)$
 $\begin{array}{ccc}\n\epsilon_n : i_0 \\
\epsilon_{\text{exp}} \\
\epsilon_{\text{exp}}\n\end{array}$
 $\begin{array}{ccc}\n\epsilon_{\text{min}} : i_0 \\
\hline\n\epsilon_{\text{exp}} \\
\epsilon_{\text{exp}}\n\end{array}$
 $\begin{array}{ccc}\n\epsilon_{\text{min}} : i_0 \\
\hline\n\epsilon_{\text{exp}} \\
\epsilon_{\text{exp}}\n\$ Strength degradation factor for interior joint Joint shear deformation (a part of δ_T)

Joint shear deformation at joint shear capacity = joint shear demand

Joint shear strength degradation

• Joint Deformation

• Deformation of beam affected by joint damage (penetration of yielding of beam rebars) **L L s** such that \mathbf{z} is the set of \mathbf{z} is the set of \mathbf{z} is the set of \mathbf{z} *^h^c ^H^s c b EI c b EI c c EI*

Elastic beam-

hb

c c EI

spring

overall deformation = joint shear + beam end

Bond-resistance parameter

© MIDAS IT Co,. Ltd

ASCE 41 overestimates the deformation capacity of interior joints showing large bond-slip due to use of high-strength bars and large diameter bars

© MIDAS IT Co,. Ltd

underestimates the deformation capacity of exterior joints

• Verification for Exterior joints

Plastic Hinge Model: Column

• Shear strength

$$
V_c = 0.17 \left(1 + \frac{N_u}{14A_g} \right) \sqrt{f_{ck}} bd \text{ and } V_s = f_{yt} A_v \frac{d}{s}
$$

• Compression ratio and shear span

$$
\eta = \frac{N_u}{f_{ck}A_g} \qquad l_s = 0.5h_n
$$

• Effective stiffness, yield deformation

$$
EI_e = \alpha EI_g \text{ where } \alpha = (\eta + 0.2) \left(\frac{l_s}{4h} \right) \ (0.3 \le \alpha \le 0.7)
$$

$$
\theta_{y} = \frac{\Delta_{y}}{l} = \frac{V_{y}}{3EI_{e}} \quad \text{or} \quad \frac{V_{y}}{K_{e}}
$$

Plastic Hinge Model : Column

• Effective stiffness

• Effective stiffness of column depends on shear span ratio as well as compression force ratio.

$$
0.3E_{c}I_{g} \leq (\eta + 0.2)(\frac{l_{s}}{4h})E_{c}I_{g} \leq 0.7E_{c}I_{g}
$$

- **① Failure mode 1 : shear failure before yielding**
- $V_c + V_s < V_y$ $V_y = M_n / l$ \longrightarrow $\frac{1}{2}$

• Deformation capacity according to failure mode

② Failure mode 2 : shear failure after flexural yielding

③ Failure mode 3 : flexural failure without shear failure \geq V_v and $V_s > V_v$

 $\mu = \begin{cases} 5 & \text{for seismic details} \\ 4 & \text{for non–seismic details} \end{cases}$ and $\theta_a =$ Δ_a $\frac{u}{l} = \mu \theta_y$

④ Failure mode 4 : compression sliding failure

$$
\theta_b = \frac{\Delta_u}{l} = \frac{0.48}{4.6 + \frac{N_u}{V_s}}
$$

$$
a = \theta_a - \theta_y \qquad V_c + V_s \ge V_y
$$

$$
b = \theta_b - \theta_y
$$

• Modeling parameters a and b are determined by yield rotation and ductility

© MIDAS IT Co., Ltd

Plastic Hinge Model: Column

• Deformation capacity according to failure mode

 $\frac{1}{4.6 + N/V_s}$

$$
\delta_{\rm B} = \alpha \delta_{\rm y} = \alpha \frac{V_M}{K_e} = \alpha \frac{M_n l_s}{3EI_e}
$$
\n
$$
(0.3E_c I_g \le EI_e \le 0.7E_c I_g) \qquad \mu_{us} = \begin{cases}\n5 - 3\left(\frac{V_y - V_s}{V_c}\right) \le 5 & \text{for seismic details} \\
4 - 2\left(\frac{V_y - V_s}{V_c}\right) \le 4 & \text{for non-seismic details} \\
4 - 2\left(\frac{V_y - V_s}{V_c}\right) \le 4 & \text{for non-seismic details} \\
a = \left(\frac{0.042 - 0.043}{\frac{A_g r_{ce}}{R_g r_{ce}} \le 0.5\right) \text{cos of } \mu_{us} \\
a = \left(\frac{0.042 - 0.043}{\frac{B_g r_{te}}{R_g r_{ce}} \le 0.5\right) \text{cos of } \mu_{us} \\
a = \left(\frac{0.042 - 0.043}{\frac{B_g r_{te}}{R_g r_{ce}} \le 0.5\right) \text{cos of } \mu_{us} \\
a = \left(\frac{0.042 - 0.043}{\frac{B_g r_{te}}{R_g r_{ce}} \le 0.5\right) \text{cos of } \mu_{us} \\
a = \left(\frac{0.042 - 0.043}{\frac{B_g r_{te}}{R_g r_{ce}} \le 0.5\right) \text{cos of } \mu_{us} \\
b = (0.012 - 0.085)\text{cos of } \mu_{us} \\
b = (0.012 - 0.085)\text{cos of } \mu_{us} \\
b = (0.012 - 0.085)\text{cos of } \mu_{us} \\
b = (0.012 - 0.085)\text{cos of } \mu_{us} \\
b = (0.012 - 0.085)\text{cos of } \mu_{us} \\
b = (0.012 - 0.085)\text{cos of } \mu_{us} \\
b = (0.012 - 0.085)\text{cos of } \mu_{us} \\
b = (0.012 - 0.085)\text{cos of } \mu_{us} \\
b = (0.012 - 0.085)\text{cos of } \mu_{us} \\
b = (0.012 - 0.085)\text{cos of } \mu_{us} \\
b = (0.012 -
$$

Table 10-8. Modeling Parameters and Numerical Acceptance Criteria for Nonlinear Procedures-Reinforced Concrete Columns Other Than Circular with Spiral Reinforcement or Seismic Hoops as Defined in ACI 318

Plastic Hinge Model: Column

• verification

-8

6

Δ

Lateral drift ratio δ (%)

8

-8

8

6

Lateral drift ratio δ (%)

© MIDAS IT Co,. Ltd

Plastic Hinge Model: **Coupling Beam**

 $c₂$ $\overline{\mathbf{z}}$ θ. θ_{h}, θ_{w} : Rotations of coupling beam and wall l_{b} , l_{w} : Lengths of coupling beam and wall \bar{r} $\theta_b = \frac{c_1 \theta_w + (l_w - c_2) \theta_w}{l_b} \approx \frac{l_w}{l_b} \theta_w$ **Deformation angle of coupling beam**

• Deformation of coupling beam

 $\theta_{b} = \frac{c_1 \theta_{w} + (l_{w} - c_2) \theta_{w}}{l_{w}} \approx \frac{l_{w}}{l_{w}} \theta_{w}$

Deformation amplification

Plastic Hinge • Effective Stiffness **Model: Coupling Beam**

Plastic Hinge Model:

• Yield deformation

Coupling Beam

$$
\frac{\Delta_y}{l} \text{ or } \theta_y = \frac{M_n}{\alpha_f K_f} = \frac{M_n}{\frac{0.3}{1 + 20(h/l)^3} \left(\frac{6E_c I_g}{l}\right)} = \frac{1 + 20(h/l)^3}{1.8} \frac{M_n l}{E_c I_g} \qquad \frac{\theta_{y, pred}}{\theta_{y, test}}
$$

Plastic Hinge Model: Coupling Beam

Design parameter **Modeling parameter** Allowable limit Reinforcement detail Lateral reinforcement ratio a (rad) $\begin{vmatrix} b & \text{rad} \\ d & d \end{vmatrix}$ b (rad) $\begin{vmatrix} c & \text{locupancy} \\ \text{locupancy} \end{vmatrix}$ Life safety Collapse prevention Diagonal seismic† \vert NA \vert 0.030 $- \theta_{\rm y}$ \vert 0.050 $- \theta_{\rm y}$ \vert 0.80 \vert $\theta_{\rm y}$ \vert a \vert b Non-seismic† $\rho_{\rm t} \geq 0.003$ | 0.030 $- \theta_{\rm y}$ | 0.050 $- \theta_{\rm y}$ | 0.80 | $\theta_{\rm y}$ | a | b $ρ_t$ (0.003 $0.020 - θ_v$ 0.035− $θ_v$ 0.50 $θ_y$ a b conventional: $V_v \leq V_n$ seismic† \vert NA \vert 0.025 $- \theta_{\rm y}$ \vert 0.050 $- \theta_{\rm y}$ \vert 0.75 \vert $\theta_{\rm y}$ \vert a \vert b Non-seismic† $\rho_t \ge 0.003$ | 0.020− θ_v | 0.035− θ_v | 0.50 | θ_v | a | b $ρ_t (0.003)$ $0.015-\theta_{\rm v}$ 0.035− $\theta_{\rm v}$ 0.25 $\theta_{\rm v}$ a b conventional: $V_{\rm v}$ $V_{\rm n}$ All cases | All cases \vert 0.008− θ_v ^{††} | 0.014− θ_v | 0.20 | NA | a | b

• Plastic deformation (based existing test results)

 V_y = shear force corresponding to flexural yielding (= $\frac{2M_n}{l}$ $\frac{u_{\rm n}}{l}$) M_n = flexural strength of coupling beam l = net beam length

 V_n = shear strength of coupling beam ρ_t = lateral reinforcement ratio

© MIDAS IT Co,. Ltd

© MIDAS IT Co., Ltd

(c) KanaKubo et al. 1996

• Verification : diagonal reinforcement

Plastic Hinge Model: Coupling Beam

- Energy dissipation based cyclic model
- ◆ By controlling energy dissipation (i.e., area of hysteresis loops), the overall shape of cyclic curves and unloading/reloading stiffnesses can be described with reasonable accuracy.

• Energy dissipation mechanism

• Most of energy during cyclic loading is dissipated by steel reinforceme nt (plastic material) rather than concrete (brittle material)

© MIDAS IT Co., Ltd

• Calculation of Energy dissipation density f Energy dissipation der
 e_p = $(M_p + M_N)(\theta_p + \theta_N - 2\theta_y)$

there
 $\theta_y = 1.70 \varepsilon_y l_p / h$ for beams,
 $2.12 \varepsilon_y l_p / h$ for rectangular columns,
 $2.35 \varepsilon_y l_p / D$ for circular columns, and
 $2.00 \varepsilon_y l_p / h$ for walls **f** Energy dissip.
 $y'_{ep} = (M_p + M_N)(\theta_p + \theta_N - 2\theta_p)$

where
 $y = 1.70 \varepsilon_y l_p / h$ for beams,
 $2.12 \varepsilon_y l_p / h$ for rectangular
 $2.35 \varepsilon_y l_p / D$ for circular co
 $2.00 \varepsilon_y l_p / h$ for walls

stley (2000). Performance based sei **Prgy dissip**
 $\frac{1}{2} \int_{r}^{2} f(x) dx$, $\frac{1}{2} M_{N} f(x) dx$
 $\frac{1}{2} \int_{r}^{2} f(x) dx$ for rectangular c
 y $\frac{1}{2} \int_{r}^{2} f(x) dx$ for circular c
 y $\frac{1}{2} \int_{r}^{2} f(x) dx$ for walls of Energy dissipation density
 $E_{ep} = (M_p + M_N)(\theta_p + \theta_N - 2\theta_y)$

where
 $\theta_y = 1.70\varepsilon, I_p / h$ for beams,
 $2.12\varepsilon, I_p / h$ for crectangular columns,
 $2.35\varepsilon, I_p / D$ for circular columns, and
 $2.00\varepsilon, I_p / h$ for walls

estley (200

 $E_{ep} = (M_p + M_N)(\theta_p + \theta_N - 2\theta_\nu)$

where

 $\theta_y = 1.70 \varepsilon_y l_p / h$ for beams,

 $2.12\varepsilon_v l_p / h$ for rectangular columns, $2.35\varepsilon_v l_p / D$ for circular columns, and

 $2.00\varepsilon_v l_p / h$ for walls

Priestley (2000). Performance based seismic design. (WCEE)

Beam with Rectangular cross-section

 $\overline{-M_{\scriptscriptstyle N}}$

 $-\theta_{_{N}}$

Moment

 $M_{\scriptscriptstyle P}$

 E_{ep}

1.70 / for beams, 2.12 / for rectangular columns, 2.35 / for circular columns, and 2.00 / for walls *y p y p l h l h l D l h* () () () 2 2 1 2 2 ¹ 2 2 4 3 2 4 3 2 2 3 2 3.4 *s s p D B y s P N y s s s s p B y s P N y D s s B y s s y s s ep P N P N p P N P N y h A l E R f A A h h A l R f A E A h R f A h f A h E M M M M l M M h* = + − + + − + = = = + + + + − **Smaller area ^As² is used.**

Rotation

 $\kappa = \frac{E_{\scriptscriptstyle D}}{E_{\scriptscriptstyle ep}}$

© MIDAS IT Co,. Ltd

• Calculation of Energy dissipation density

• Energy dissipation density

Analysis

Effective depth

Walls with uniformly distributed reinforcement

• Energy dissipation density

- \blacklozenge Reduction factor λ for short column ($\lambda/d \lt 3$) and short beam ($\lambda/d \lt 5$)
	- \triangleright Pinching due to shear deformation and bond-slip

The energy dissipation of RC members should be evaluated using **Longitudinal elongation flexural deformation excluding shear deformation** $E_{II} = 2R_B A_{s2} f_y \left[\left(\phi^+ + \phi^- \right) l_p h_s - \left(3 + \frac{A_{s2}}{A_{s1}} \right) l_p \varepsilon_y \right] \\ = 2R_B A_{s2} f_y \left[\left(\theta^+ + \theta^- \right) h_s - \left(3 + \frac{A_{s2}}{A_{s1}} \right) l_p \varepsilon_y \right]$ E_{ep} Mean: 0.99 Standard Deviation: 0.18 3 Test/prediction Hysteretic E_{π} energy $E_{\rm max}$ dissipation Δ \circ ⁸ Shear-slip Ω 0.08 0.02 0.04 0.06 0.1 Shear span to height ratio l_i/h Pinching due to shear deformation **→ Reduction in hysteretic energy dissipation**

Longitudinal elongation can cause shear deformation. As the shear span becomes longer, the contribution of the shear deformation to the total deformation decreases.

• Modeling of cyclic curve

(b) Hysteresis model for moment hinge element

• For columns

(c) Circular columns $(l_s/h \ge 3.0$ and $\lambda_s = 1.0$)

Verification of Structural Performance

 D_{u} = member plastic rotation D_{ne} = allowable plastic rotation

 F_{ns} = gravity load effect F_s = seismic load effect $\mathcal{A}_n =$ design strength

• Evaluation criteria

- Summary of structure
- 24 story above ground, 1 story in basement
- Apartment building
- Seismic importance class 1 (KDS 41)
- Bearing wall structure (wall –slab structure)
- Transfer slab in 3rd story (moment frame below and bearing wall system above)
- Pile foundation
- Software for basic elastic design : Midas
- Software for nonlinear analysis : Perform 3D

- Procedure
- Basic design : KDS 41 (building structural design code)
- Nonlinear analysis modeling : Guidelines for PBSD
- Selection of ground motions
- Nonlinear time history analysis
- Performance evaluation / interim report
- Peer review
- Final report
- Target performance
- » Collapse prevention limit state : 2400 year return period EQ (0.22 g) mandatory
- » Life safety : 1400 year return period EQ (0.17g)

Application • Structural plan**Example**

- Materials
- Concrete strength : 24 27 MPa
- Steel reinforcement : 500 Mpa D10 and D13 600 Mpa D16 and greater
- Design information
	- » Regional factor = 0.176 g
	- » Importance factor = 1.2
	- \triangleright Site class = S4
	- » Response modification factor = 4 (bearing wall structure)
	- » Dynamic period = 2.0 sec (X direction), 1.64 sec (Y direction)

- Fiber models for walls
- » Multiple fiber model layers for pl astic hinge zone(1st story)
- » Single fiber model layer for other stories
-

» Concrete strength : 27 MPa » Steel reinforcement : 500 Mpa

<u> Electric Property (Figure 2014)</u>

PC1, PC2

PC3 (2002) (2003) (2003) (2003) (2003)

<u>PC111</u>

• Ground motions

Application • Time history displacements at top floor mass center **Example**

 \rightarrow EQ 1 – x direction

$$
\triangleright
$$
 EQ 1 – y direction

• Evaluation criteria

 F_{ns} = gravity load effect F_s = seismic load effect ΦF_n = design strength

· Story drift ratio

X-Dir. EDGE 2 Drift

© MIDAS IT Co., Ltd

Application • Plastic rotation of beam (Deformation-controlled behavior) **Example**

B1-2 End Rotaion

• Shear of Walls (Force-controlled behavior) **Application Example** • Walls are vulnerable to shear due to dynamic amplification after flexural yielding

 F_{ns} +1.2 (F_{s} - F_{ns}) $\leq \phi F_{n}$ Increase of shear reinforcementPW1 ^ SW4A-1 SW4A-2 EW5-2 \sim <u>U)</u> $\frac{1}{2}$ $W1A-1$ **W1A-1 Wall Shear Force** $\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\text{P} & \text{N2-2} \\
\text{N2-2} & \text{N2}\n\end{array}\n\end{array} \\
\begin{array}{c}\n\begin{array}{c}\n\text{N2-2} \\
\text{N2}\n\end{array}\n\end{array} \\
\end{array}$ Height Story **Elastic Design Result** After reinforcing l enath l fck l thk, l fv thk fck Hor. f_v Hor. **24F** PW_{1B} $-- PWA1A$ $24F$ 644 6690 24 200 500 D10@440 200 24 500 D10@440 $---F01X$ 23F $\overline{\mathbf{s}}$ ∣≳ EW5-1 $23F$ 61.6 22F $---EQ1Y$ $22F$ 58.8 \bullet $21/$ $\frac{1}{2}$ $---EQ2X$ $21F$ 56 $2\frac{1}{2}$ $---EQ2Y$ 20F 53.2 ZБF $---EQ3X$ **19F** 50.4 EW6 /18F $\sqrt{\frac{1}{2}}$ **18F** 47.6 $---E03Y$ $17F$ 44.8 500 $17F$ D10@250 $SW5$ $---EQAX$ **16F** PW1C **16F** 42 **15F** $---EQ4Y$ $15F$ 39.2 HW2-2 HW4-1 HW5 HW4-2 HW2-3 HW2-4 HW4-3 PHW15 PHW14-1 PHW **14F** $---EQ5X$ $14F$ 36.4 $\begin{array}{c} \bigoplus_{\substack{1 \\ \mathbf{y} \in \mathbb{R}^n}} \mathbb{R}^3 \mathbb{R}^3 \\ \mathbb{S}^{11} \mathbb{R}^3 \end{array}$ $\frac{1}{2}$ $\frac{1}{2}$ ----- EQ5Y $13F$ 33.6 200 500 D10@350 200 500 D10@150 \longrightarrow EQ6X $12F$ 30.8 $M3A H$ _{W3A-} $11F$ 28 \longrightarrow \longrightarrow EQ6Y PW11B Ӛѻӻ **10F** 25.2 27 27 $---EQ7X$ 9F $9F$ 22.4 $---EQ7Y$ **SF** 8F 19.6 ξ $W1A-2$ **7F O**-Average $7F$ 16.8 6F $W3$ **PW13** -0 1.2 Average $6F$ 14 5F $=$ $=$ Vn $5F$ 11.2 $4F$ ━━━보강후 Vn $4F$ 8.4 3F HWS HW7-HW8 HW7-2 PHW18 몬 $3F$ 5.6 500 D10@440 \longrightarrow Vn, max $2F$ $2F$ 2.8 $1F$ $1F$ \circ $-1F$ -5.8 D10@350 250 500 D10@350 250 500 $-1F$ Length fck thk. fv Hor. fck Hor. 1,000 2,000 3.000 4.000 5.000 6.000 7,000 \blacksquare © MIDAS IT Co., Ltd Story Height Elastic Design Result After reinforcing Shear Force (kN) $W1A-1$

- Summary of Evaluation
- Most of the basic design is OK except for walls.
- Strengthening is required for shear of walls
- Boundary confinement is r equired for B/E of walls

Conclusion

- RC members fail due to concrete (not due to steel)
- Shear strength of concrete is not constant but a function of deformation
- Deformation-controlled shear strength model

References

- Choi, K.-K., and Park, H.-G., "Evaluation of inelastic deformation capacity of beams subjected to cyclic loading", ACI Structural Journal, V. 107, No. 5, Sept.-Oct. 2010. pp. 507-515.
- Choi, K.-K., Kim, J.-C., and Park, H.-G., "Shear strength model of concrete beam based on compression zone failure mechanism", ACI Structural Journal, V. 113, No. 5, Sept.-Oct. 2016, pp. 1095-1106.
- Elwood, K. J., and Moehle J.P., "Axial capacity model for shear-damaged columns", ACI Structural Journal, 102(4), 2005.
- Elwood, K. J., and Moehle, J. P., "Drift capacity of reinforced concrete columns with light transverse reinforcement", Earthquake Spectra, V. 21 No. 1, 2005, pp. 71-89.
- Eom, T.S. and Park, H.G., "Evaluation of shear deformation and energy dissipation of reinforced concrete members subjected to cyclic loading", ACI Structural Journal, 110(5), 2013.
- Eom, T.S., Hwang, H.J., and Park, H.G. "Energy-based hysteresis model for reinforced concrete beam-column connections", ACI Structural Journal, 112(2), 2015.
- Eom, T.S., Kang, S.M., Park, H.G., Choi, T.W., and Jin, J.M., "Cyclic loading test for reinforced concrete columns with continuous rectangular and polygonal hoops", Engineering Structures, 17(15), 2014.
- Eom, T.S., Park, H.G., and Kang, S.M., "Energy-based cyclic force-displacement relationship for reinforced concrete short coupling beams", Engineering Structures, 31, 2009.
- Lim, J.J., Park, H.G., and Eom, T.S., "Cyclic load tests of reinforced concrete columns with high-strength bundled bars", ACI Structural Journal, 114(1), 2017.
- Park, H.G. and Eom, T.S. "A simplified method for estimating the amount of energy dissipated by flexure-dominated reinforced concrete members for moderate cyclic deformations", Earthquake Spectra, 22(2), 2006.

References

- Hwang H.J., Park H.G., Choi W.S., Chung L., and Kim J.K., "Cyclic Loading Test for Beam-Column Connections with 600 MPa (87 ksi) Beam Flexural Reinforcing Bars", ACI Structural Journal, V. 111, No. 4, 2014, pp. 913-924.
- Hwang H.J., Eom T.S., and Park H.G., "Bond-Slip Relationship of Beam Flexural Bars in Interior Beam-Column Joints", ACI Structural Journal, V. 112, No. 6, 2015, pp. 827-837.
- Hwang, H.J., Eom, T.S., and Park, H.G., "Shear Strength Degradation Model for Performance-Based Design of Interior Beam-Column Joints", ACI Structural Journal, V. 114, No. 5, 2017a, pp. 1143-1154.
- Hwang, H.J., Park, H.G., and Yi, W.J., "Development Length of Standard Hooked Bar Based on Non-uniform Bond Stress Distribution", ACI Structural Journal, Vol.114, No.6, 2017b. pp.1637-1648.
- Hwang, H.J., and Park, H.G., "Requirements of Shear Strength and Hoops for Performance-Based Design of Interior Beam-Column Joints", ACI Structural Journal, V. 116, No. 2, 2019, pp. 245-256.
- Hwang, H.J., and Park, H.G., "Performance-based Shear Design of Exterior Beam-Column Joints with Standard Hooked Bars", ACI Structural Journal, V. 117, No. 2, 2020a, pp. 67-80.
- Hwang, H.J., and Park, H.G., "Plastic Hinge Model for Performance-based Design of Beam-Column Joints", Journal of Structural Engineering, ASCE, 2020b, 10.1061/(ASCE)ST.1943- 541X.0002892.
- Kim, C.G., Eom, T.S., and Park, H.G., "Cyclic load test of reinforced concrete columns with V-shaped ties", ACI Structural Journal, in press, 2019c
- Kim, C.G., Park, H.G., and Eom T.S., "Effects of type of bar lap splice on reinforced concrete columns subjected to cyclic loading", ACI Structural Journal, 116(2), 2019b
- Kim, C.G., Park, H.G., and Eom T.S., "Seismic performance of reinforced concrete columns with lap splices in plastic hinge region", ACI Structural Journal, 115(1), 2018.
- Kim, C.G., Park, H.G., and Eom, T.S., "Cyclic load test and shear strength degradation model for columns with limited ductility tie details", Journal of Structural Engineering, 145(2), 2019a.

감사합니다.

© MIDAS IT Co,. Ltd