# MIDAS GTS NX TRAINING ACADEMY 2025 Advanced numerical modelling and analysis

#### MIDAS IT EUROPE





# 1. DEEP EXCAVATION MODELLING AND ANALYSIS



## CONTENTS

## Session 1. DEEP EXCAVATION

GTS NX Introduction
 Analysis Capabilities
 Project Accomplishments
 Problem Statement

## **Engineering Applications (Infra)**

#### **Roads/Highways Engineering**

- Slopes
- Pavement Design
- Ground Improvement
- Bridge Foundation Analysis
- MSE Walls
- Tunnels

#### **Railroads Engineering**

- Subway Systems
- Tunnels
- Bridge Foundations
- Underground Stations





#### **Airports Engineering**

- Runways/Taxiways
- Foundation Analysis

#### Waterways Engineering

- Docks
- Jetty/Quay Walls
- Land Reclamation
- Coastal Protection (Dykes)

### GTS NX: Finite Element Analysis based Platform catering Geotechnical Applications







## **Deep Excavation Fundamentals**



- $\succ$  Excavations where depth exceeds 4.5m.
- Support systems necessary unless it is entirely made in stable rock.
- > Detailed design must be carried out by trained professionals.
- ➤ HSE determines the safety and guidelines for urban safety.
- Eurocode 7 gives guidelines for stability checks and calculations.



# GTS NX ANALYSIS CAPABILITIES

## **Geometry Modelling**

- Direct import of Survey Data Points and Elevation data from LIDAR Survey
- Complex 3D topography modelling using imported data points
- Complex 3D topography modelling using imported contour curves
- Supports .dxf, .dwg and other CAD format drawings import

#### Parasolid (9 to 34) Files (\*.x\_t\*.xmt\_txt\*.x\_b;\*.xmt\_bin)

ACIS (R1 - 2022 1.0) Files (\*.sat;\*.sab;\*.asat;\*.asab) STEP (AP203, AP214, AP242) Files (\*.stp;\*.step) IGES (Up to 5.3) Files (\*.igs;\*.iges) Pro-E (16 - Creo 8.0) Files (\*.prt;\*.prt.\*;\*.asm;\*.asm.\*) CATIA V4 (CATIA 4.1.9 - 4.2.4) Files (\*.model;\*.exp;\*.session) CATIA V5 (V5 R8 - V5-6R2025) Files (\*.cATPart;\*.CATProduct) SolidWorks (98 - 2022) Files (\*.sldprt;\*.sldasm) Unigraphics (11 - NX2007) Files (\*.prt) Inventor Part (V6 - V2022) Files (\*.ipt) Inventor Assembly (V11 - V2022) Files (\*.iam)



CAD Formats import

Geometry Modelling and Meshing

## **CAD Compatibility**



Import contour maps, soil stratigraphy data, borehole maps, on .dxf/.dwg/parasolid format (Leapfrog,MicroStation, AutoCAD, ArchGIS) in Terrain Geometry Maker to develop ground profile.

## **Data Points Face Generation**

Directly import point coordinates for faster & accurate geometry development







## **DEM (GIS) Data Interpretation**

GTS NX has number of ways for creating complex geometries.

GTS NX geometric design features involve DEM data input, survey data points input to generate topographical surfaces.

Insert DEM data directly into the table to create complex 2D face.

|    | 1       | 2       | 3       | 4       | 5       | 6       | 7        | 8       | 9       | 10      | 11      |    |
|----|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|----|
| 1  | 73.7453 | 73.0347 | 72.3097 | 71.7822 | 71.5474 | 70.7379 | 70.062   | 69.4084 | 68.8169 | 68.0452 | 67.3076 | TI |
| 2  | 73.7247 | 72.6607 | 72.235  | 71.8046 | 71.6368 | 71.2275 | 70.2296  | 69.4084 | 68.9041 | 67.9462 | 67.4084 | П  |
| 3  | 73.6609 | 73.2905 | 74.0117 | 74.1279 | 74.0707 | 73.7121 | 72.9791  | 71.8809 | 70.6906 | 69.412  | 68.1794 | П  |
| 4  | 76,677  | 77.5757 | 77,532  | 77,4184 | 77.357  | 76,9289 | 76,1313  | 74.8779 | 73,6836 | 72,5761 | 71,5865 | П  |
| 5  | 81,1425 | 81,1587 | 81.0753 | 80.8848 | 80,7789 | 80,3263 | 79,5051  | 78.2253 | 76.8065 | 75,5849 | 74,5264 | T  |
| 6  | 84.8791 | 84.9956 | 84.6452 | 84.3175 | 84.1881 | 83.7344 | 82.8894  | 81.5563 | 80.0535 | 78.7149 | 77.4575 | Π  |
| 7  | 88.8944 | 88.8582 | 88.2503 | 87.7925 | 87.623  | 87.0589 | 86.1468  | 84.77   | 83.2413 | 81.7574 | 80.3445 | П  |
| 8  | 92.7244 | 92.3803 | 91.744  | 91.2643 | 91.0518 | 90.3088 | 89.5464  | 88.1294 | 86.486  | 84,775  | 83.2513 | Π  |
| 9  | 96.5824 | 95.8548 | 95.1192 | 94.6134 | 94.3868 | 93.6385 | 92.9212  | 91.2943 | 89.3501 | 87.6171 | 86.1602 | Π  |
| 10 | 100.22  | 99.5488 | 98.7432 | 98.1112 | 97.8356 | 96,9635 | 96,1689  | 94.6354 | 92.5721 | 90,4833 | 88.6109 | Π  |
| 11 | 103.652 | 102.797 | 101.999 | 101.424 | 101.171 | 100.296 | 99.4163  | 98.1974 | 96.066  | 93.7841 | 91.514  | Π  |
| 12 | 107.524 | 106.341 | 105.357 | 104.644 | 104.355 | 103.508 | 102.64   | 101.697 | 99.6122 | 96.8934 | 94.2563 | Π  |
| 13 | 111.456 | 110.406 | 109.198 | 108.37  | 108.027 | 106.904 | 105.934  | 104.847 | 102.313 | 99.7589 | 96.6639 | Π  |
| 14 | 114.699 | 113.572 | 112.502 | 111.562 | 111.174 | 110.018 | 108.537  | 106.738 | 104.209 | 101.619 | 98.8112 | Π  |
| 15 | 117.262 | 116.182 | 114.78  | 113.563 | 113.077 | 111.643 | 109.709  | 107.573 | 105.374 | 102.875 | 100,666 | Γ  |
| 16 | 119.585 | 117.944 | 116.279 | 114,974 | 114.394 | 112.414 | 110.421  | 108.353 | 106.349 | 104.336 | 102.452 | П  |
| 17 | 121.134 | 119.002 | 116.899 | 115.498 | 114.908 | 112.945 | 111.082  | 109.199 | 107.308 | 105.579 | 104.446 | Π  |
| 18 | 121.123 | 119.144 | 117.201 | 115.837 | 115.276 | 113.509 | 111.741  | 110.012 | 108.165 | 106.856 | 105.984 | Γi |
| 19 | 120.748 | 119.114 | 117.382 | 116.157 | 115.652 | 114.028 | 112.376  | 110.695 | 109.158 | 107.909 | 107.286 | П  |
| 20 | 120.374 | 119.033 | 117.48  | 116.425 | 115.983 | 114.413 | 112.775  | 111.323 | 110.049 | 109.078 | 108.478 | Γ  |
| 21 | 120.06  | 118.895 | 117.487 | 116.519 | 116.123 | 114.746 | 113.286  | 112.093 | 111.087 | 110.246 | 109.676 | Π  |
| 22 | 119.953 | 118,765 | 117.39  | 116.588 | 116.259 | 115.078 | 114.048  | 112.96  | 112.144 | 111.425 | 111.039 | Γ  |
| 23 | 119.75  | 118.537 | 117.332 | 116.772 | 116.548 | 115.628 | 114.775  | 113.977 | 113.287 | 112.923 | 112.782 | П  |
| 24 | 119.706 | 118.494 | 117.338 | 116.816 | 116.915 | 116.418 | 115.718  | 115.057 | 114.613 | 114.633 | 114.615 | Π  |
| 25 | 119.514 | 118.39  | 117.477 | 117.057 | 117.479 | 117.151 | 116.84   | 116.479 | 116.347 | 116.315 | 116.318 | П  |
| 26 | 119.348 | 118.564 | 117.969 | 117.609 | 118.406 | 118.276 | 118.303  | 118.27  | 118.338 | 118.344 | 118.091 |    |
| 27 | 119.64  | 119.089 | 118.664 | 118.469 | 119.56  | 119,718 | 119.885  | 120.052 | 120.156 | 120.163 | 119,851 |    |
| 28 | 120 207 | 110 202 | 110 588 | 110 5/  | 120 055 | 121 236 | 121 ///7 | 171 518 | 171 518 | 171 /0/ | 177 577 | E  |





## **Bedding Plane Wizard**



Excel files can also be used for large data sets.

## **Concept To Reality**

Using TGM & Bedding Plane Wizard To Generate 3D Models



3D Model Ground Profile

Investigation Area

Ground Surface Profile (Borehole Data + Surface Topography)

#### **All-in-One FEM based 3D Geotechnical Analysis Software**



#### **Excavation & Temporary Structures**



#### Tunnel



Adjacent Structures

TRcM/CAM (Subway tunnel)

2-Arch Tunnel (NATM method)

#### **Foundations**



#### **Ground Improvement**



#### **Slopes Stability Analysis**



#### **Modelling Methodology**



#### **Advanced Features: Partial factors**

| Partial Factor          |                | ×      | ]     |                      |       |    |
|-------------------------|----------------|--------|-------|----------------------|-------|----|
| Name                    |                | DA1C2  |       |                      |       |    |
| Partial Factor Material | Loads          |        |       |                      |       |    |
| Import Database         |                |        |       |                      |       |    |
| Eurocode 7 - DA1, C1    | $\sim$         | Assign | Euroc | code 7 - DA1, C1     |       |    |
| Material Parameters     |                |        | Euroo | code 7 - DA1, C2     |       |    |
| Cohesion                | 1.25           |        | Euroc | code 7 - DA2         |       |    |
| Frictional Angle        | 1.25           |        | Luiot | Jode / DAS           |       |    |
| Undrained Cohesior      | 1.4            |        |       |                      |       |    |
| Permanent Load          |                |        |       |                      |       |    |
| Favorable               | 1              |        |       |                      |       |    |
| Unfavorable             | 1              |        |       |                      | Perm  | an |
| Variable Load           |                |        |       | Values of            |       |    |
| Favorable               | 1              |        |       |                      |       |    |
| Unfavorable             | 1.5            |        |       | Partial Factor       | Fav.  | Ur |
|                         |                |        |       |                      |       |    |
| Add                     | Modify         | Delete |       | Eurocode 7 - DA1, C1 | 1.000 | 1. |
| Name                    | Material Loads | 3      |       | Eurocode 7 - DA1, C2 | 1.000 | 1. |
|                         |                |        |       | Eurocode 7 - DA2     | 1.000 | 1. |
|                         |                | Class  |       | Eurocode 7 - DA3     | 1.000 | 1. |
|                         |                | Close  |       |                      |       |    |

- **DA1, C1**: Partial factor will apply to load only.
- **DA1, C2**: Partial factor will apply to load and soil material.
- **DA2**: DA2 is similar with DA1, C1. But, the factors for pile and footing are different.
- **DA3**: DA3 is similar with DA1, C2. But, the factor for load (Unfavorable under Variable) is different

|                             | Perm  | anent  | Variable |        | Soil                         |        |                               |  |
|-----------------------------|-------|--------|----------|--------|------------------------------|--------|-------------------------------|--|
| Values of<br>Partial Factor | Fav.  | Unfav. | Fav.     | Unfav. | Effective<br>Cohesion<br>(c) | tan Φ' | Undrained<br>Strength<br>(su) |  |
| Eurocode 7 - DA1, C1        | 1.000 | 1.350  | 1.000    | 1.500  | 1.000                        | 1.000  | 1.000                         |  |
| Eurocode 7 - DA1, C2        | 1.000 | 1.000  | 1.000    | 1.300  | 1.250                        | 1.250  | 1.400                         |  |
| Eurocode 7 - DA2            | 1.000 | 1.350  | 1.000    | 1.500  | 1.000                        | 1.000  | 1.000                         |  |
| Eurocode 7 - DA3            | 1.000 | 1.350  | 1.000    | 1.500  | 1.250                        | 1.250  | 1.400                         |  |

GTS NX

# PROJECT ACCOMPLISHMENTS

## Skyway Monte Bianco - Funivia del Monte Blanco

#### Courmayeur, Italy

holzner.bertagnolli

| Owner                       | Funivie Monte Bianco AG                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Contractor          | Cogeis                                                                                                                                                                                                                                                                                                                                                                                       |
| Engineering Consultant      | Holzner & Bertagnolli Engineering                                                                                                                                                                                                                                                                                                                                                            |
| Architecture                | Studio Progetti                                                                                                                                                                                                                                                                                                                                                                              |
| Design                      | Dimensione Ingenierie                                                                                                                                                                                                                                                                                                                                                                        |
| Construction Period         | 2010 - 2015                                                                                                                                                                                                                                                                                                                                                                                  |
| Project Type                | Aerial Lift                                                                                                                                                                                                                                                                                                                                                                                  |
| Main features in modelling  | <ul> <li>Rock excavation stability on top of the mountain</li> <li>Tensile variations of the existing tie rods cableway</li> </ul>                                                                                                                                                                                                                                                           |
| Description on this project | The cable car in Aosta Valley, at the entrance to the Mont Blanc<br>tunnel, leads from Courmayeur to 1,200m above sea level.<br>The new cable car valley station is being built near an existing station,<br>as well as a restaurant which must remain operational, A 3D FEM<br>analysis was required to analyze the interaction of the new<br>construction and current adjacent structures. |



# **Odeon Tower**

## Mona



| Owner                       | Group Marzocco                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Contractor          | Vinci Construction France                                                                                                                                                                                                                                                                                                                                                                       |
| Engineering Consultant      | Coyne et Bellier                                                                                                                                                                                                                                                                                                                                                                                |
| Architecture                | Alexandre Giraldi                                                                                                                                                                                                                                                                                                                                                                               |
| Construction Period         | 2010 - 2015                                                                                                                                                                                                                                                                                                                                                                                     |
| Project Type                | Office Building                                                                                                                                                                                                                                                                                                                                                                                 |
| Size of the Structure       | 170m Height (49-Story)                                                                                                                                                                                                                                                                                                                                                                          |
| Main features in modelling  | <ul> <li>Assessment of ground movements especially at adjacent building<br/>foundations</li> <li>Deep excavation in a sloping site and retaining system (especially<br/>arching effects on the uphill side)</li> </ul>                                                                                                                                                                          |
| Description on this project | The Odeon Tower is a double - skyscraper in the Principality of Monaco,<br>It was the first high-rise in the city to be built since the 1980s,<br>But high-rise constructions had been abandoned due to aesthetic<br>concerns and criticism of over-development, 3D model of excavation and<br>construction sequence was necessary to ensure adjacent school<br>buildings will not be affected. |



## Subway Impact Assessment

- Minam Complex Construction

#### Busan, Korea

JIN YOUNG CONSULTANTS CO\_LTD

Design for Construction Investigation of existing subway structure subjected to excavation for new building construction.

Overview Safety investigation for 2-Arch tunnels and 1-Arch type tunnel where a large-scale excavation for a new building foundation takes place with temporary shoring within close proximity.



## Deep Excavation Pile Foundation

A construction stage analysis was used to design the complex foundation, which is a combination of piled raft and retaining walls with a thickness of 1m and depth of 36m. There is a three-story underground structure of rectangular shape with dimensions in the plan of 170.5m x 58m. Vertical bearing structures are steel columns, which are supported by piles with a diameter of 2m and a depth of 51m.

## Deep Excavation Effect of Adjacent Structure

A 3D FEM analysis was used to calculate the impact on surrounding buildings and a network of pipelines during the excavation and construction of multi-functional complex with deep pile foundation,







# PROBLEM STATEMENT

Excavation Area 10mx20m Excavation Depth 10m

Supports Of Excavation:

Sheet Pile Wall Height 12m Thickness 10cm

Strut H Section 300x300x10/15

Anchor Diameter 0.025m

Non-Linear Static Construction Stage Analysis



### LET'S START MODELLING

# 2. TUNELLING MODELLING AND ANALYSIS



## CONTENTS

### Session 2. TUNELLING

GTS NX Introduction
 Analysis Capabilities
 Project Accomplishments
 Problem Statement

#### GTS NX is a Finite Element Analysis platform which can be used to deal with all types of Geotechnical Applications







Axisymmetric





# GTS NX ANALYSIS CAPABILITIES

### **Tunnel Modelling Approaches**

- Lining and Soil as Spring
- 2D Modelling
- 3D Modelling



Lining and Soil as Spring Approach

### **2D Modelling-Plain Strain Condition**





## **3D Modelling**





**Tunnel Portals** 



Metro Structures



#### **Tunnel Face Stabilization**

#### **Modelling Methodology**



#### **Tunnel Section Drawing**



#### **Supported CAD Formats**



#### **Interactive Geometry Modelling Tools**

• Borehole excel data import (Bedding plane wizard): Automatically generate 3D geological stratum through actual field data.



• Other advanced modelling features: Facilitate the creation of complex geometries.





Divided (define excavation stages) A

Boolean Operation A

### Interoperability

**CAD import:** Import advanced geometry directly into GTS NX. Supports ".dwg" and ".dxf" files including other file formats.



**Interoperability:** Import superstructure data directly from Midas Civil and Midas Gen to perform SSI analysis.



Effect of Tunnelling on Surrounding Structures and Vice Versa

#### **Material Models & Functions**

#### Elastic Materials

- · Linear Elastic Isotropic
- · Linear Elastic
- Transversely Isotropic
- Interface Elastic
- Nonlinear Elastic (1D)
- Jardine
- · D-Min
- · Hyperbolic (Duncan-Chang)

#### **Plastic Materials**

- · von Mises
- · Tresca
- · Mohr-Coulomb
- · Drucker-Prager
- Strain-Softening
- · Modified Cam Clay
- · Jointed Rock
- Modified Mohr Coulomb
- · Hoek Brown
- · Inverse Rankine
- · Coulomb Friction (Interface)
- Janssen







#### **Undrained Materials**

· Effective Stiffness / Effective Strength · Effective Stiffness / Undrained Strength · Undrained Stiffness / Undrained Strength

#### Functions

· General non-spatial functions (pile / pile tip bearing nonlinear function) · Nonlinear elastic functions (truss / point spring / elastic link) Unsaturated property functions (Gardner, Frontal, Van Genuchten) · Strain compatibility functions

(2D equivalent linear)

#### Orthotropic

- Transversely Isotropic
- Jointed Rock Mass
- 2D Orthotropic
- Geogrid

#### Elastic Tresca von Mises Mohr-Coulomb Drucker Prager Hoek Brown Generalized Hoek Brown Hyperbolic(Duncan-Chang) Strain Softening Modified Cam Clay Jardine D-min Modified Mohr-Coulomb Soft Soil Soft Soil Creep Modified UBCSAND Sekiguchi-Ohta(Inviscid) Sekiguchi-Ohta(Viscid) Ramberg-Osgood Hardin-Drnevich Hardening Soil(small strain stiffness) Generalized SCLAY1S CWFS User supplied material

#### Catabase [(0], (0.4), (04) (2000) • [(0], (0.4), (04) (2000) • [(0], (0.4), (04) (2000) • Head (m) VWC Permeability Ratio



Unsaturated property (Relation) A

1-43

#### **Material Models & Functions**

|                                        |                                   |                  |           |                              |                 | Model Type  | Jointed F      | lock Mass      |         |        | <ul> <li>Structure</li> </ul> |
|----------------------------------------|-----------------------------------|------------------|-----------|------------------------------|-----------------|-------------|----------------|----------------|---------|--------|-------------------------------|
|                                        | Model Type Hoek Brown             |                  | ~         | Structure                    |                 | Parameter 1 | Parameter      | 2 Porous       | Thermal |        |                               |
| Elastic                                |                                   |                  |           |                              |                 |             | Farancee       | 2 Porous       | mermar  |        |                               |
| Tresca   von Mises                     | General Porous Non-Linear         | Thermal Time     | e Depende | nt                           |                 | Elastic M   | /odulus(E1)    |                |         | 20000  | 00 kN/m²                      |
| Mohr-Coulomb                           |                                   |                  |           |                              |                 | Elastic M   | 1odulus(E2)    |                |         | 100000 | 00 kN/m²                      |
| Drucker Prager                         | Initial m                         |                  | 1         |                              |                 | Poisson     | 's Ratio(v 12, | v 13)          |         | 0      | .4                            |
| Generalized Hoek Brown                 | Initial s                         |                  | 0.003     | 9                            |                 | Poisson     | 's Ratio(v23)  |                |         | 0      | .2                            |
| Hyperbolic(Duncan-Chang E-v)           |                                   | _                |           |                              |                 | Shear M     | Iodulus(G12,   | G13)           |         | 80000  | 00 kN/m²                      |
| Strain Softening                       | Residual m                        |                  | 10        | 0                            |                 | Shear M     | Iodulus(G23)   |                | _       | 40000  | 00 kN/m²                      |
| Modified Cam Clay                      | Residual s                        |                  | 0.003     | 9                            |                 | Declinat    | ion            |                |         |        | 0 [deg]                       |
| D-min                                  |                                   |                  |           |                              |                 | Number      | of Joints      |                |         |        | 1                             |
| Modified Mohr-Coulomb                  | Uniaxial Comp. Strength(σc)       | )                | 30        | 0 kN/m <sup>2</sup>          |                 |             |                |                |         | _      |                               |
| Soft Soil                              |                                   |                  |           |                              |                 |             | Joint1         | Joint2         | Joint3  |        |                               |
| Soft Soil Creep<br>Modified LIBCSAND   |                                   |                  |           |                              |                 | С           | 30             | 30             | 30      | kN/m²  |                               |
| Sekiguchi-Ohta(Inviscid)               |                                   |                  |           | —— 🔑 🗗 🗗                     | ₽₽₽₽₽₩          | Φ           | 35             | 35             | 35      | [deg]  | C : Cohesion                  |
| Sekiguchi-Ohta(Viscid)                 | Model Type Generalized Hoek Brown | • · · ·          | Struc     | ture                         |                 | ٥1          | 45             | 45             | 45      | [deg]  | Φ : Frictional Angle          |
| Hardin-Drnevich                        | General Porous Non-Linear Therma  | al Time Dependen | t         |                              | asic 💦 🔭 All Ge | ۵2          | 60             | 60             | 60      | [deg]  | Ψ : Dilatancy Angle           |
| Hardening Soil(small strain stiffness) |                                   |                  |           |                              |                 | Ψ           | 35             | 35             | 35      | [deg]  | σt : Tensile Strength         |
| Generalized SCLAY1S                    | Initial mb                        | 10               |           |                              |                 | 🗌 ot        | 0              | 0              | 0       | kN/m²  |                               |
| Rankine                                | Initial s                         | 0.004            | Ho        | ek Brown Parameter           | ×               | In          | tact Daramat   | ~              |         |        |                               |
| Concrete Smeared Crack                 | Initial a                         | 0.5              |           |                              |                 |             | lact Paramet   | er             |         |        |                               |
| Concrete Damaged Plasticity            |                                   |                  | -         | Intact rock parameter(mi)    | 10              | Coh         | esion (C)      |                |         |        | 30 kN/m²                      |
| GHE-S                                  |                                   |                  | _         | Geological Strength Index(GS | SI) 50          | Fric        | ional Angle (  | Φ)             |         |        | 35 [deg]                      |
| NorSand                                | Residual mb                       | 0                | ]         | Disturbance Factor(D)        | 0               |             | ilatancy Ang   | le <b>(</b> Ψ) |         |        | 35 [deg]                      |
|                                        | Residual s                        | 0                |           | (-)                          |                 |             |                |                |         |        |                               |
|                                        | Residual a                        | 0                |           |                              | OK Cancel       |             |                |                |         |        |                               |
|                                        | Uniaxial Comp. Strength           | 30000            | kN/m²     |                              |                 |             |                |                |         |        |                               |
|                                        | Dilatancy Angle                   | 30               | [deg]     |                              |                 |             |                |                |         |        |                               |

#### **Element Library**

#### **1D**

Geogrid(1D) Plot only(1D) Truss Embedded truss Beam Pile **2D** Geogrid(2D) Plot only(2D) Gauging shell Axisymmetric Shell Plane stress Plane strain **3D** Solid Applicable Rigid link Pile tip User specified behavior for Shell interface Point spring Matrix spring Interface Shell interface Elastic link



1-45

### **Interface Elements: Joints Modelling**

Interface can be used to simulate

- Joints
- Friction between primary and secondary Linings
- Crack propagation in segments

#### Etc.,









### Hybrid Mesh with Hexahedral Elements

Supports Linear and Higher Order Elements

- ➢ Tetrahedron
- > Pyramid
- > Pentahedron
- ➢ Hexahedron
- ➤ Triangle
- > Quadrilateral
- ➢ Hybrid

Hybrid Mesh and Higher Order Elements help in increasing Accuracy and Reducing Analysis Time



#### **All-in-One FEM based 3D Geotechnical Analysis Software**



#### **Tunnel Construction Methods**



NATM Tunnel – Relaxation Definition

Shield TBM and Contraction Definition

### **Dynamic Analysis**

Dynamic Analysis Boundary Conditions:

- Free-Field (Line/ Plane)
- Ground Surface Springs
- Absorbent/ Viscous Boundary

Dynamic Analysis Types:

- Linear Time History
- Non- Linear Time History
- Response Spectrum
- ➢ Eigen value
- Stress- Non Linear Time History Coupled





Absorbent/ Viscous Boundary





[DATA] stress NLTH, initial, INCR=1 (LOAD=1.000), [UNIT] kN, mm

### **Tunnel Modelling Wizard**

| Tunnel Wizard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             | ×                                 |                                |       | Tunnel Wizard                                                                  |                             |                   |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|-------|--------------------------------------------------------------------------------|-----------------------------|-------------------|---------|
| General Shotcrete & Rock Bolts Excavation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mesh                                                                                                                                                        |                                   |                                |       | General Shotcrete & Rock Bolts Excavation M                                    | ish                         |                   |         |
| Type Full O Half(Right)<br>Shape S center Circle<br>Groular<br>3 center Circle<br>S center Circle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Soon         mm         A1         60           R2         4000         mm         A2         30           R3         9000         mm         A3         20 | [deg]<br>[deg]<br>[deg]           |                                |       | Shotcrete Shotcrete Property Add Shotcrete to the Intermediate Wall Rock Bolts | Soft Shot                   | crete Property    | 2: U    |
| Number of Tunnels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tangential Radius Angle Unit:                                                                                                                               | mm, [deg]                         |                                |       | Property 🗸 🔛                                                                   | Numbers                     | 11                |         |
| Input Guide     Drawing     Update                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R4 15000 A4 20 C                                                                                                                                            |                                   |                                |       | Input Guide     Drawing     Update                                             | Length                      | 4000              | mm      |
| A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R5 A5 C                                                                                                                                                     |                                   |                                |       |                                                                                | Tangential Pitch            | 2000              | mm      |
| RI AL R2<br>A3 A3 R5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1'         60           R2'         4000         mm         A2'         30           R3'         9000         mm         A3'         20                    | [deg]<br>Define Excavation Method | Type Bench Cut1                | ×     | pinea                                                                          | Add Rock Bolts              | s to the Intermed | fiate 1 |
| No and a second se | Excavation Method                                                                                                                                           |                                   | Bench Cut2<br>Dimens Ring Cut1 |       |                                                                                | Length<br>Tapagential Ritch | 4000              |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Full Face Cut     Method     Full Face Cut     Others     Define Other Methods                                                                              |                                   | h CD Cut                       |       |                                                                                | Offset                      | 0                 |         |
| Open Save as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Save Default Data Open Default Data OK                                                                                                                      |                                   |                                |       | Open Save as Sav                                                               | e Default Data Ope          | n Default Data    |         |
| Lerror] The angle (A4) of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | annen ( /ur., siruunu ue siriainen uidit 10.8.                                                                                                              |                                   | Update Draw                    | Close |                                                                                |                             |                   |         |

1.Input Tunnel Dimensions and Select Excavation Method 2. Input The Sequential Bolting Pattern & Shotcrete Properties

ing 🗸 🔝

Division 2

OK Cancel



3. GTS NX Auto Calculates The Excavation Sequence and Reinforcement Placing Based On User Input

| Tunnel Wizard                                                                           | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Shotcrete & Rock Bolts Excavation Mesh                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Define Strata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Define Terrain(Grid Face - Elevation Data)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| bupt Gude     Orawing     Interval     Stream     Learnel Breakery     Learnel Breakery | Turnel (coston         0000         mm           Depth         0000         mm           Lateral Boundary         4         x 0           CTC         2.5         x 0           Croand Modeling         Imm         mm           Image: State See Elec.         mm         mm           Lateral Societ Elec.         mm         mm           Societ Elec.         mm         mm           Lateral Societ Elec. | image: strate         image: s | DOT         1         1         Linking in         Particle         Dist         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |
| Open Save as Save Default Data Open                                                     | Intermediate 1.5 x Tunnel Mesh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ( ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | с тт ттттттттттттттттттттттттттттттттттттттт = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

4. Terrain and Strata Modelling. Elevation Data from Lidar Survey

#### **Tunnel Modelling Wizard**



### **Stage Wizard: Construction Stages Simulation**



**Stage Wizard** to automatically assign Construction Stages when dealing with 100's of Mesh sets

Restart Analysis: You can Restart the analysis from a specific stage

### **Post Processing Features**

- Contours
- Graphs
- Animations
- Tables
- Cutting Plane
- Sections Diagrams
- Reports

1.65e+001 3.3e+00

• Result Tag/Probing



0 +36.09 0+32.49 0+28.88 0+25.27 0+21.66 0+18.05 0+14.44 0+10.83 0+7.22 0+3.61 0+0.00

Ž,×

[DATA] Tunnel Construction, Final Lining-3, INCR=1 (LOAD=1.000), [UNIT] IN, mm

Result Extraction as Image, Animation, Video Excel, pdf, Word formats



#### Sectional View: Clipping Line/Plane

|   | No | Step                             | Step Value    | Node: 6960<br>TZ TRANSLATION (V)<br>(m) |                 |
|---|----|----------------------------------|---------------|-----------------------------------------|-----------------|
| • |    | Initial:INCR=1 (LOAD=1.000)      | 1.000000e+000 | 0.000000e+000                           |                 |
|   | 2  | Bottom foundation:INCR=1 (LOAD=  | 1.000000e+000 | 0.000000e+000                           |                 |
|   | 3  | Top construction:INCR=1 (LOAD=1. | 1.000000e+000 | 0.000000e+000                           |                 |
|   | 4  | Loading:INCR=1 (LOAD=0.033)      | 3.333330e-002 | -1.812772e-004                          |                 |
|   | 5  | Loading:INCR=2 (LOAD=0.067)      | 6.666670e-002 | -3.625544e-004                          |                 |
|   | 6  | Loading:INCR=3 (LOAD=0.100)      | 1.000000e-001 | -5.438315e-004                          |                 |
|   | 7  | Loading:INCR=4 (LOAD=0.133)      | 1.333330e-001 | -7.251087e-004                          |                 |
|   | 8  | Loading:INCR=5 (LOAD=0.167)      | 1.666670e-001 | -9.063859e-004                          |                 |
|   | 9  | Loading:INCR=6 (LOAD=0.200)      | 2.000000e-001 | -1.087663e-003                          |                 |
|   | 10 | Loading:INCR=7 (LOAD=0.233)      | 2.333330e-001 | -1.268940e-003                          |                 |
|   | 11 | Loading:INCR=8 (LOAD=0.267)      | 2.666670e-001 | -1.450217e                              | Section Dislon  |
|   | 12 | Loading:INCR=9 (LOAD=0.300)      | 3.000000e-001 | -1.631495e                              | Sorting Dialog  |
|   | 13 | Loading:INCR=10 (LOAD=0.333)     | 3.333330e-001 | -1.812772e                              | Style Dialog    |
|   | 14 | Loading:INCR=11 (LOAD=0.367)     | 3.666670e-001 | -1.994049e                              | Show Graph      |
|   | 15 | Loading:INCR=12 (LOAD=0.400)     | 4.000000e-001 | -2.175326e                              |                 |
|   | 16 | Loading:INCR=13 (LOAD=0.433)     | 4.333330e-001 | -2.356603e                              | Export to Excel |
|   | 17 | Loading:INCR=14 (LOAD=0.467)     | 4.666670e-001 | -2.537881e                              | ,               |
|   | 18 | Loading:INCR=15 (LOAD=0.500)     | 5.000000e-001 | -2.719162e-003                          |                 |
|   | 1  |                                  |               |                                         |                 |

Results extracted as Tables and Graphs Extracted results/graphs directly exported to excel



# PROJECT ACCOMPLISHMENTS

## Cityringen Copenhagen Metro

#### Copenhagen, Denmark

### 🕒 Lombardi

| Owner                       | Metroselskabet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Engineering Consultant      | Lombardi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Construction Period         | 2011 - 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Type                | Subway Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Size of the Structure       | 15.5 km long twin single - track metro tunnels,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Main features in modelling  | <ul> <li>Interaction between MIDAS family programs (Gen &amp; GTS NX)</li> <li>Construction stage analysis for TBM</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                              |
| Description on this project | The Cityringen is a city circle metro – line, approximately 15.5 km long and will<br>serve major areas of the city of Copenhagen including the Danish Parliament,<br>the Central Station, the City Hall, existing major S – train and metro stations<br>and national monuments. The line will have driverless communication – based<br>train control system, with stewards on board. A round trip is expected to take<br>23 minutes. The headway interval is expected to be 200 sec., with 28 trains of 3<br>carriages running at 90 km/h. |





## Posiva's ONKALO

#### Eurajoki, Finland

#### POSIVA

| General Contractor          | Kalliorakennus Oy, SK - Kaivin Oy and Destia Oy                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Engineering Consultant      | Posiva                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Construction Period         | 2004 - Under Construction                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Project Type                | Nuclear Waste Disposal Facility                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Size of Structure           | 455m Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Main features in modelling  | <ul> <li>Stability of hard rock excavations in depth up to 500 m and to<br/>optimize rock support system</li> <li>Impact of vibration due to blasting and groundwater level on<br/>underground cavern</li> </ul>                                                                                                                                                                                                                                                   |
| Description on this project | The Onkalo Spent Nuclear Fuel Repository is a deep tunnel system<br>for the final disposal of spent nuclear fuel. It is first of such<br>repository in the world. It is currently under construction at the<br>Olkiluoto Nuclear Power Plant in the municipality of Eurajoki, on<br>the west coast of Finland, by the company Posiva. It is based on<br>the KBS - 3 method of nuclear waste burial developed in Sweden<br>by Svensk Karnbranslehantering AB (SKB). |



# Trans - Hudson Express

#### New York, USA



| Owner                       | NJ Transit and Port Authority of New York and New Jersey                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Contractor          | THE Partnership JV                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Engineering Consultant      | ILF Consulting Engineers                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Construction Period         | 2009 - 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Project Type                | Rail Tunnel                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Size of Structure           | - Palisades Tunnels (1.6km Length)<br>- Hudson River Tunnels (2.3km Length)<br>- Manhattan Tunnels (2km Length)<br>- Station Cavern (29m Wide, 27m Height)                                                                                                                                                                                                                                                                                                               |
| Main features in modelling  | <ul> <li>Construction sequences of the subway complex</li> <li>Stability of lining structures and rock bolts</li> </ul>                                                                                                                                                                                                                                                                                                                                                  |
| Description on this project | <ul> <li>NYPSE Caverns and Ancillary Tunnels         <ul> <li>Evaluated geotechnical ground properties, geotechnical/geological<br/>models developed</li> <li>Defined excavation stages/sequences</li> <li>Designed initial ground support</li> <li>Predicted surface settlements</li> <li>Provided Overbuild Criteria to specify magnitude, distribution<br/>and location of loading due to future overbuild along both sides<br/>of 34th Street</li> </ul> </li> </ul> |



# King's Cross Station

#### London, United Kingdom

## ARUP

| Owner                       | Network Rail                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Architecture                | John McAslan + Partners                                                                                                                                                                                                                                                                                                                                          |
| Engineering Consultant      | Arup/Morgan Sindall                                                                                                                                                                                                                                                                                                                                              |
| Construction Period         | 2008 - 2013                                                                                                                                                                                                                                                                                                                                                      |
| Project Type                | Railroad Station                                                                                                                                                                                                                                                                                                                                                 |
| Main features in modelling  | <ul> <li>The section of the existing tunnel where the shaft intersects is<br/>strengthened with block work,</li> <li>The cylindrical section of the shaft is built with segmental lining.</li> <li>The tapered section of the shaft is built in 1 m deep stages and<br/>lined with sprayed concrete,</li> </ul>                                                  |
| Description on this project | The redevelopment of King's Cross station in the city of London<br>is turning a historic rail terminus into a dynamic transport hub.<br>Arup's work as a lead consultant on King's Cross station embraced<br>transport planning, multi-disciplinary engineering services,<br>security, IT, lighting design, acoustics, visualization, and<br>pedestrian modeling |



# **Busan Subway Line 3 Tunnel**

- Zone 321

Busan, Korea



Design for construction Performing construction stage analysis to check the settlement while checking the initial support capacity for the fan plant structure.

#### Overview

Two types of analysis were performed based on different 3D model files. The full underground structure was modeled to monitor the initial support capacity including rock bolts and shotcrete, at structural level. A construction sequences analysis of the fan plant was ran to obtain the general stability and settlements of the soil layers, at geotechnical level.





# PROBLEM STATEMENT

Tunnel Section: Horseshoe Shape

Shotcrete Thickness: 0.3m

Rock bolts Section: Solid Round Diameter 0.025m Length 4m

Excavation Length for each stage: 4m



### LET'S START MODELLING