MIDAS GTS NX TRAINING ACADEMY 2025 Advanced numerical modelling and analysis

MIDAS IT EUROPE

Pragati Saxena

1. DEEP EXCAVATION MODELLING AND ANALYSIS

CONTENTS

Session 1. DEEP EXCAVATION

GTS NX Introduction
 Analysis Capabilities
 Project Accomplishments
 Problem Statement

Engineering Applications (Infra)

Roads/Highways Engineering

- Slopes
- Pavement Design
- Ground Improvement
- Bridge Foundation Analysis
- MSE Walls
- Tunnels

Airports Engineering

- Runways/Taxiways
- Foundation Analysis

Waterways Engineering

- Docks
- Jetty/Quay Walls
- Land Reclamation
- Coastal Protection (Dykes)

Railroads Engineering

- Subway Systems
- Tunnels
- Bridge Foundations
- Underground Stations

GTS NX: Finite Element Analysis based Platform catering Geotechnical Applications

Deep Excavation Fundamentals

- \succ Excavations where depth exceeds 4.5m.
- Support systems necessary unless it is entirely made in stable rock.
- > Detailed design must be carried out by trained professionals.
- ➢ HSE determines the safety and guidelines for urban safety.
- Eurocode 7 gives guidelines for stability checks and calculations.

GTS NX ANALYSIS CAPABILITIES

Geometry Modelling

- Direct import of Survey Data Points and Elevation data from LIDAR Survey
- Complex 3D topography modelling using imported data points
- Complex 3D topography modelling using imported contour curves
- Supports .dxf, .dwg and other CAD format drawings import

Parasolid (9 to 34) Files (*.x_t,*.xmt_txt,*.x_b,*.xmt_bin)

ACIS (R1 - 2022 1.0) Files (*.sat,*.sab;*.asat,*.asab) STEP (AP203, AP214, AP242) Files (*.stp;*.step) IGES (Up to 5.3) Files (*.igs;*.iges) Pro-E (16 - Creo 8.0) Files (*.prt,*.prt,*.*.asm;*.asm,*) CATIA V4 (CATIA 4.1.9 - 4.2.4) Files (*.model;*.exp;*.session) CATIA V5 (V5 R8 - V5-6R2025) Files (*.cATPart,*.CATProduct) SolidWorks (98 - 2022) Files (*.sldprt,*.sldasm) Unigraphics (11 - NX2007) Files (*.prt) Inventor Part (V6 - V2022) Files (*.ipt) Inventor Assembly (V11 - V2022) Files (*.iam)

CAD Formats import

Geometry Modelling and Meshing

CAD Compatibility

Import contour maps, soil stratigraphy data, borehole maps, on .dxf/.dwg/parasolid format (Leapfrog,MicroStation, AutoCAD, ArchGIS) in Terrain Geometry Maker to develop ground profile.

Data Points Face Generation

Directly import point coordinates for faster & accurate geometry development

2

5

6

7

DEM (GIS) Data Interpretation

GTS NX has number of ways for creating complex geometries.

GTS NX geometric design features involve DEM data input, survey data points input to generate topographical surfaces.

Insert DEM data directly into the table to create complex 2D face.

	1	2	3	4	5	6	7	8	9	10	11	
1	73.7453	73.0347	72.3097	71.7822	71.5474	70.7379	70.062	69.4084	68.8169	68.0452	67.3076	TI
2	73.7247	72.6607	72.235	71.8046	71.6368	71.2275	70.2296	69.4084	68.9041	67.9462	67.4084	П
3	73.6609	73.2905	74.0117	74.1279	74.0707	73.7121	72.9791	71.8809	70.6906	69.412	68.1794	П
4	76.677	77.5757	77.532	77.4184	77.357	76.9289	76.1313	74.8779	73.6836	72.5761	71.5865	TI
5	81.1425	81.1587	81.0753	80.8848	80.7789	80.3263	79.5051	78.2253	76.8065	75.5849	74.5264	П
6	84.8791	84.9956	84.6452	84.3175	84.1881	83.7344	82.8894	81.5563	80.0535	78.7149	77.4575	П
7	88.8944	88.8582	88.2503	87.7925	87.623	87.0589	86.1468	84.77	83.2413	81.7574	80.3445	П
8	92.7244	92.3803	91.744	91.2643	91.0518	90.3088	89.5464	88.1294	86.486	84,775	83.2513	П
9	96.5824	95.8548	95.1192	94.6134	94.3868	93.6385	92.9212	91.2943	89.3501	87.6171	86.1602	П
10	100.22	99.5488	98.7432	98.1112	97.8356	96.9635	96.1689	94.6354	92.5721	90,4833	88.6109	Π
11	103.652	102.797	101.999	101.424	101.171	100.296	99.4163	98.1974	96.066	93.7841	91.514	П
12	107.524	106.341	105.357	104.644	104.355	103,508	102.64	101.697	99.6122	96.8934	94.2563	Π
13	111.456	110.406	109.198	108.37	108.027	106,904	105.934	104.847	102.313	99.7589	96.6639	П
14	114.699	113.572	112.502	111.562	111.174	110.018	108.537	106.738	104.209	101.619	98.8112	Π
15	117.262	116.182	114.78	113.563	113.077	111.643	109.709	107.573	105.374	102.875	100,666	П
16	119.585	117.944	116.279	114,974	114.394	112,414	110.421	108.353	106.349	104.336	102.452	П
17	121.134	119.002	116.899	115.498	114,908	112,945	111.082	109.199	107.308	105.579	104.446	П
18	121,123	119,144	117,201	115,837	115.276	113,509	111.741	110.012	108,165	106.856	105,984	Т
19	120.748	119.114	117.382	116.157	115.652	114.028	112.376	110.695	109.158	107.909	107.286	П
20	120.374	119.033	117.48	116.425	115.983	114.413	112.775	111.323	110.049	109.078	108.478	П
21	120.06	118.895	117.487	116.519	116.123	114,746	113.286	112.093	111.087	110.246	109.676	П
22	119.953	118,765	117.39	116.588	116.259	115,078	114.048	112.96	112.144	111.425	111.039	П
23	119.75	118.537	117.332	116.772	116.548	115.628	114.775	113.977	113.287	112.923	112.782	П
24	119.706	118.494	117.338	116.816	116.915	116.418	115.718	115.057	114.613	114.633	114.615	П
25	119.514	118.39	117.477	117.057	117.479	117.151	116.84	116.479	116.347	116.315	116.318	П
26	119.348	118.564	117.969	117.609	118.406	118.276	118.303	118.27	118.338	118.344	118.091	П
27	119.64	119.089	118.664	118.469	119.56	119,718	119.885	120.052	120,156	120.163	119.851	П
78	120 207	110 808	110 588	110 5/	120 055	171 796	121 //7	171 518	171 518	171 404	177 577	Г

Bedding Plane Wizard

Excel files can also be used for large data sets.

Concept To Reality

Using TGM & Bedding Plane Wizard To Generate 3D Models

3D Model Ground Profile

Investigation Area

Ground Surface Profile (Borehole Data + Surface Topography)

All-in-One FEM based 3D Geotechnical Analysis Software

Excavation & Temporary Structures

Tunnel

Adjacent Structures

TRcM/CAM (Subway tunnel)

2-Arch Tunnel (NATM method)

Foundations

Ground Improvement

Slopes Stability Analysis

Modelling Methodology

Advanced Features: Partial factors

Partial Factor			×]			
Name	[DA1C2				
Partial Factor	Material	Loads					
Import Databa	ase						
Eurocode 7 -	DA1, C1	~	Assign	Euro	code 7 - DA1, C1		
Material Para	meters	1.05		Eurocode 7 - DA1, C2 Eurocode 7 - DA2			
Cohesion		1.25		Euroo	code 7 - DA3		
Frictional Ar	ngle	1.25					
Undrained C	Cohesion	1.4					
Permanent L	oad						
Favorable		1					
Unfavorabl	e	1				Perm	é
Variable Load	d				Values of		ſ
Favorable		1			Values 01		
Unfavorabl	e	1.5			Partial Factor	Fav.	
Add		Modify	Delete		F 1 7 5 1 4	4 0 0 0	ŀ
					Eurocode 7 - DA1, C1	1.000	ļ
Name		Material Loads			Eurocode 7 - DA1, C2	1.000	
					Eurocode 7 - DA2	1.000	
					Eurocode 7 - DA3	1.000	ſ
			Close				

•	DA1,	C1: Partial	factor will	apply	to load	only.
---	------	-------------	-------------	-------	---------	-------

- **DA1, C2**: Partial factor will apply to load and soil material.
- **DA2**: DA2 is similar with DA1, C1. But, the factors for pile and footing are different.
- **DA3**: DA3 is similar with DA1, C2. But, the factor for load (Unfavorable under Variable) is different

	Permanent		Variable		Soil			
Values of Partial Factor	Fav.	Unfav.	Fav.	Unfav.	Effective Cohesion (c)	tan Φ'	Undrained Strength (su)	
Eurocode 7 - DA1, C1	1.000	1.350	1.000	1.500	1.000	1.000	1.000	
Eurocode 7 - DA1, C2	1.000	1.000	1.000	1.300	1.250	1.250	1.400	
Eurocode 7 - DA2	1.000	1.350	1.000	1.500	1.000	1.000	1.000	
Eurocode 7 - DA3	1.000	1.350	1.000	1.500	1.250	1.250	1.400	

GTS NX

Skyway Monte Bianco - Funivia del Monte Blanco

Courmayeur, Italy

holzner.bertagnolli

Owner	Funivie Monte Bianco AG					
General Contractor	Cogeis					
Engineering Consultant	Holzner & Bertagnolli Engineering					
Architecture	Studio Progetti					
Design	Dimensione Ingenierie					
Construction Period	2010 - 2015					
Project Type	Aerial Lift					
Main features in modelling	 Rock excavation stability on top of the mountain Tensile variations of the existing tie rods cableway 					
Description on this project	The cable car in Aosta Valley, at the entrance to the Mont Blanc tunnel, leads from Courmayeur to 1,200m above sea level. The new cable car valley station is being built near an existing station, as well as a restaurant which must remain operational, A 3D FEM analysis was required to analyze the interaction of the new construction and current adjacent structures.					

Odeon Tower

Mona

Owner	Group Marzocco					
General Contractor	Vinci Construction France					
Engineering Consultant	Coyne et Bellier					
Architecture	Alexandre Giraldi					
Construction Period	2010 - 2015					
Project Type	Office Building					
Size of the Structure	170m Height (49-Story)					
Main features in modelling	 Assessment of ground movements especially at adjacent building foundations Deep excavation in a sloping site and retaining system (especially arching effects on the uphill side) 					
Description on this project	The Odeon Tower is a double - skyscraper in the Principality of Monaco, It was the first high-rise in the city to be built since the 1980s, But high-rise constructions had been abandoned due to aesthetic concerns and criticism of over-development, 3D model of excavation and construction sequence was necessary to ensure adjacent school buildings will not be affected,					

Subway Impact Assessment

- Minam Complex Construction

Busan, Korea

JIN YOUNG CONSULTANTS CO_LTD

Design for Construction Investigation of existing subway structure subjected to excavation for new building construction.

Overview Safety investigation for 2-Arch tunnels and 1-Arch type tunnel where a large-scale excavation for a new building foundation takes place with temporary shoring within close proximity.

Deep Excavation Pile Foundation

A construction stage analysis was used to design the complex foundation, which is a combination of piled raft and retaining walls with a thickness of 1m and depth of 36m. There is a three-story underground structure of rectangular shape with dimensions in the plan of 170.5m x 58m. Vertical bearing structures are steel columns, which are supported by piles with a diameter of 2m and a depth of 51m.

Deep Excavation Effect of Adjacent Structure

A 3D FEM analysis was used to calculate the impact on surrounding buildings and a network of pipelines during the excavation and construction of multi-functional complex with deep pile foundation,

PROBLEM STATEMENT

Excavation Area 10mx20m Excavation Depth 10m

Supports Of Excavation:

Sheet Pile Wall Height 12m Thickness 10cm

Strut H Section 300x300x10/15

Anchor Diameter 0.025m

Non-Linear Static Construction Stage Analysis

LET'S START MODELLING

2. TUNELLING MODELLING AND ANALYSIS

CONTENTS

Session 2. TUNELLING

GTS NX Introduction
 Analysis Capabilities
 Project Accomplishments
 Problem Statement

GTS NX is a Finite Element Analysis platform which can be used to deal with all types of Geotechnical Applications

Axisymmetric

GTS NX ANALYSIS CAPABILITIES

Tunnel Modelling Approaches

- Lining and Soil as Spring
- 2D Modelling
- 3D Modelling

Lining and Soil as Spring Approach

2D Modelling-Plain Strain Condition

3D Modelling

Tunnel Portals

Tunnel Face Stabilization

Modelling Methodology

Tunnel Section Drawing

Supported CAD Formats

Interactive Geometry Modelling Tools

• Borehole excel data import (Bedding plane wizard): Automatically generate 3D geological stratum through actual field data.

• Other advanced modelling features: Facilitate the creation of complex geometries.

Divided (define excavation stages) A

Boolean Operation A

Interoperability

CAD import: Import advanced geometry directly into GTS NX. Supports ".dwg" and ".dxf" files including other file formats.

Interoperability: Import superstructure data directly from Midas Civil and Midas Gen to perform SSI analysis.

Effect of Tunnelling on Surrounding Structures and Vice Versa

Material Models & Functions

Elastic Materials

- · Linear Elastic Isotropic
- · Linear Elastic
- · Transversely Isotropic
- · Interface Elastic
- · Nonlinear Elastic (1D)
- Jardine
- · D-Min
- · Hyperbolic (Duncan-Chang)

Plastic Materials

- · von Mises
- · Tresca
- · Mohr-Coulomb
- · Drucker-Prager
- Strain-Softening
- · Modified Cam Clay
- · Jointed Rock
- · Modified Mohr Coulomb
- · Hoek Brown
- · Inverse Rankine
- · Coulomb Friction (Interface)
- Janssen

Undrained Materials

Effective Stiffness / Effective Strength
 Effective Stiffness / Undrained Strength
 Undrained Stiffness / Undrained Strength

Functions

General non-spatial functions (pile / pile tip bearing nonlinear function)
Nonlinear elastic functions (truss / point spring / elastic link) Unsaturated property functions (Gardner, Frontal, Van Genuchten)
Strain compatibility functions

(2D equivalent linear)

Orthotropic

- Transversely Isotropic
- Jointed Rock Mass
- 2D Orthotropic
- Geogrid

Elastic Tresca von Mises Mohr-Coulomb Drucker Prager Hoek Brown Generalized Hoek Brown Hyperbolic(Duncan-Chang) Strain Softening Modified Cam Clay Jardine D-min Modified Mohr-Coulomb Soft Soil Soft Soil Creep Modified UBCSAND Sekiguchi-Ohta(Inviscid) Sekiguchi-Ohta(Viscid) Ramberg-Osgood Hardin-Drnevich Hardening Soil(small strain stiffness) Generalized SCLAY1S

CWFS User supplied material

Unsaturated property (Relation) A

Material Models & Functions

Elastic Tresca

von Mises

Hoek Brown

Jardine

Soft Soil

CWFS

Rankine

PM4Sand

GHE-S

NorSand

D-min

Model Type Jointed Rock Mass Structure Model Type Hoek Brown \sim Structure Parameter1 Parameter2 Porous Thermal General Porous Non-Linear Thermal Time Dependent Elastic Modulus(E1) kN/m² 1000000 kN/m² Mohr-Coulomb Elastic Modulus(E2) 10 Drucker Prager Initial m Poisson's Ratio(v12,v13) 0.4 0.2 Generalized Hoek Brown Initial s 0.0039 Poisson's Ratio(v23) Hyperbolic(Duncan-Chang E-v) 800000 kN/m² Shear Modulus(G12,G13) Hyperbolic(Duncan-Chang E-B) Residual m 10 Strain Softening 400000 kN/m² Shear Modulus(G23) Modified Cam Clay 0.0039 0 [deg] Residual s Declination 1 Number of Joints 30 kN/m² Uniaxial Comp. Strength(oc) Modified Mohr-Coulomb Joint1 Joint2 Joint3 Soft Soil Creep 30 30 30 kN/m² С Modified UBCSAND 35 Sekiguchi-Ohta(Inviscid) 35 35 [deg] C: Cohesion Φ Model Type Generalized Hoek Brown Structure Sekiguchi-Ohta(Viscid) \sim 45 45 ⁴⁵ [deg] Φ : Frictional Angle α1 Ramberg-Osgood S 4 Basic All Ge * General Porous Non-Linear Thermal Time Dependent 60 60 ۵2 60 [deg] Ψ : Dilatancy Angle Hardin-Drnevich Hardening Soil(small strain stiffness) - Ψ 35 35 35 [deg] ot : Tensile Strength Generalized SCLAY 1S 10 Initial mb 🗌 ot 0 kN/m2 0 0 Initial s 0.004 Х Hoek Brown Parameter Intact Parameter Concrete Smeared Crack Initial a 0.5 Concrete Damaged Plasticity 10 30 kN/m2 Intact rock parameter(mi) Residual Parameters Frictional Angle (Φ) 35 [deg] Geological Strength Index(GSI) 50 0 Residual mb Dilatancy Angle (Ψ) 35 [deg] Disturbance Factor(D) 0 0 Residual s Cancel 0 OK Residual a 30000 kN/m² Uniaxial Comp. Strength 30 [deg] Dilatancy Angle

Rocks Behaviour and Joints Modelling

Element Library

1D

Geogrid(1D) Plot only(1D) Truss Embedded truss Beam Pile **2D** Geogrid(2D) Plot only(2D) Gauging shell Axisymmetric Shell Plane stress Plane strain **3D** Solid Applicable Rigid link Pile tip User specified behavior for Shell interface Point spring Matrix spring Interface Shell interface Elastic link

Interface Elements: Joints Modelling

Interface can be used to simulate

- Joints
- Friction between primary and secondary Linings
- Crack propagation in segments

Etc.,

Hybrid Mesh with Hexahedral Elements

Supports Linear and Higher Order Elements

- ➢ Tetrahedron
- > Pyramid
- > Pentahedron
- ➢ Hexahedron
- ➤ Triangle
- > Quadrilateral
- > Hybrid

Hybrid Mesh and Higher Order Elements help in increasing Accuracy and Reducing Analysis Time

All-in-One FEM based 3D Geotechnical Analysis Software

Tunnel Construction Methods

DISPLACEMENT TOTAL T , m +0.00000 0.0% +0.00000 0.0% -+0.00000 0.0% +0.00000 0.0% -+0.00000 0.0% +0.00000 0.0% +0.00000 0.0% ---+0.00000 0.0% +0.00000 0.0% +0.00000 0.0% +0.00000 0.0% +0.00000 0.0% -+0.00000 0.0% +0.00000 0.0% -+0.00000 0.0% +0.00000 0.0% -+0.00000 0.0% -+0.00000 0.0% +0.000000.0% -+0.00000 100.0% +0.00000

NATM Tunnel – Relaxation Definition

Shield TBM and Contraction Definition

Dynamic Analysis

Dynamic Analysis Boundary Conditions:

- Free-Field (Line/ Plane)
- Ground Surface Springs
- Absorbent/ Viscous Boundary

Dynamic Analysis Types:

- Linear Time History
- Non- Linear Time History
- Response Spectrum
- ➢ Eigen value
- Stress- Non Linear Time History Coupled

Free Field Dynamic Boundary

Absorbent/ Viscous Boundary

Tunnel Modelling Wizard

Tunnel Wizard	×	Tunnel Wizard
General Shotcrete & Rock Bolts Excevation Mesh		General Shotcrete & Rock Bolts Excavation Mesh
Type Protect Cricke Property 3 Center Cricke Property 4 Center Crick	[deg] [deg] <t< td=""><td>Shotorete Shotorete Property Add Shotorete to the Intermediate Wall</td></t<>	Shotorete Shotorete Property Add Shotorete to the Intermediate Wall
Open Save as Save Default Data OK		Open Save as Save Default Data
[Error] The angle (A4) of Invert Arc should be smaller than 16.8.	Update Draw Close	

1.Input Tunnel Dimensions and Select Excavation Method

Shotcrete Property 2: Lining ~ 🔛 Division 2 Open Default Data OK Cancel

2. Input The Sequential Bolting Pattern & Shotcrete Properties

											-
Excavation Type	e 	Adva	incing Le	ength			Rock	Solt Locat	ion	-	
One Dir.	Both Dir.	Advar	nces .	30@2	_		Au	to(at Mid	. Adv.)	1 User	
1st Excavation '	Tunnel	Total	Length	of Tunnel	6	0	Pitche	s 1, 2	9@2		
🔊 Left	@ Right		Adv	Dist	Div	LD 🔺		Pit.	Dist	Ang.	*
			2.0	2.0	1	- E	1	1.0	1.0	90.0	
enne stages at	rter 1st excavation		2.0	4.0	1	E	2	2.0	3.0	90.0	E
Core	e [1]^	3	2.0	6.0	1		3	2.0	5.0	90.0	ш
Shotcrete Set	1	4	2.0	8.0	1		4	2.0	7.0	90.0	
ROCK DOIL SEL		5	20	10.0	1		5	2.0	9.0	90.0	
	E	6	20	12.0	1		6	2.0	11.0	90.0	
		7	2.0	14.0	1		7	2.0	13.0	90.0	
		8	2.0	16.0	1		8	2.0	15.0	90.0	
	+	9	2.0	18.0	1	- i	9	2.0	17.0	90.0	
nd Excavation 1	Tunnel 1	•	1			•	10	20	19.0	0.00	
											I
								_			_

3. GTS NX Auto Calculates The Excavation Sequence and Reinforcement Placing Based On User Input

4. Terrain and Strata Modelling. Elevation Data from Lidar Survey

Tunnel Modelling Wizard

Stage Wizard: Construction Stages Simulation

Stage Wizard to automatically assign Construction Stages when dealing with 100's of Mesh sets

Restart Analysis: You can Restart the analysis from a specific stage

Post Processing Features

- Contours ٠
- Graphs ٠
- Animations ٠
- Tables ٠
- Cutting Plane ٠
- Sections Diagrams ٠
- Reports ٠

1.65e+004 3.3e+00

Result Tag/Probing

+36.09 +32.49 +28.88 +25.27 +21.66

0%18.05 0%18.05 0%14.44 0%14.44 0%17.22 0%7.22 0%3.61 +0.00

Z, Y

Result Extraction as Image, Animation, Video Excel, pdf, Word formats

Sectional View: Clipping Line/Plane

No	Step	Step Value	Node: 6960 TZ TRANSLATION (V) (m)	
	Initial:INCR=1 (LOAD=1.000)		0.000000e+000	
2	Bottom foundation:INCR=1 (LOAD=	1.000000e+000	0.000000e+000	
3	Top construction:INCR=1 (LOAD=1.	1.000000e+000	0.000000e+000	
4	Loading:INCR=1 (LOAD=0.033)	3.333330e-002	-1.812772e-004	
5	Loading:INCR=2 (LOAD=0.067)	6.666670e-002	-3.625544e-004	
6	Loading:INCR=3 (LOAD=0.100)	1.000000e-001	-5.438315e-004	
7	Loading:INCR=4 (LOAD=0.133)	1.333330e-001	-7.251087e-004	
8	Loading:INCR=5 (LOAD=0.167)	1.666670e-001	-9.063859e-004	
9	Loading:INCR=6 (LOAD=0.200)	2.000000e-001	-1.087663e-003	
10	Loading:INCR=7 (LOAD=0.233)	2.333330e-001	-1.268940e-003	
11	Loading:INCR=8 (LOAD=0.267)	2.666670e-001	-1.450217e	Casting Distan
12	Loading:INCR=9 (LOAD=0.300)	3.000000e-001	-1.631495e	Sorting Dialog
13	Loading:INCR=10 (LOAD=0.333)	3.333330e-001	-1.812772e	Style Dialog
14	Loading:INCR=11 (LOAD=0.367)	3.666670e-001	-1.994049e	Show Graph
15	Loading:INCR=12 (LOAD=0.400)	4.000000e-001	-2.175326e	Short Stapilin
16	Loading:INCR=13 (LOAD=0.433)	4.333330e-001	-2.356603e	Export to Excel
17	Loading:INCR=14 (LOAD=0.467)	4.666670e-001	-2.537881e	
18	Loading:INCR=15 (LOAD=0.500)	5.000000e-001	-2.719162e-003	

Results extracted as Tables and Graphs Extracted results/graphs directly exported to excel

Cityringen Copenhagen Metro

Copenhagen, Denmark

🕒 Lombardi

Owner	Metroselskabet
Engineering Consultant	Lombardi
Construction Period	2011 - 2017
Project Type	Subway Station
Size of the Structure	15.5 km long twin single - track metro tunnels,
Main features in modelling	 Interaction between MIDAS family programs (Gen & GTS NX) Construction stage analysis for TBM
Description on this project	The Cityringen is a city circle metro – line, approximately 15,5 km long and will serve major areas of the city of Copenhagen including the Danish Parliament, the Central Station, the City Hall, existing major S – train and metro stations and national monuments. The line will have driverless communication – based train control system, with stewards on board. A round trip is expected to take 23 minutes. The headway interval is expected to be 200 sec., with 28 trains of 3 carriages running at 90 km/h.

Posiva's ONKALO

Eurajoki, Finland

POSIVA

General Contractor	Kalliorakennus Oy, SK - Kaivin Oy and Destia Oy
Engineering Consultant	Posiva
Construction Period	2004 - Under Construction
Project Type	Nuclear Waste Disposal Facility
Size of Structure	455m Depth
Main features in modelling	 Stability of hard rock excavations in depth up to 500 m and to optimize rock support system Impact of vibration due to blasting and groundwater level on underground cavern
Description on this project	The Onkalo Spent Nuclear Fuel Repository is a deep tunnel system for the final disposal of spent nuclear fuel. It is first of such repository in the world. It is currently under construction at the Olkiluoto Nuclear Power Plant in the municipality of Eurajoki, on the west coast of Finland, by the company Posiva. It is based on the KBS - 3 method of nuclear waste burial developed in Sweden by Svensk Karnbranslehantering AB (SKB).

Trans - Hudson Express

New York, USA

Owner	NJ Transit and Port Authority of New York and New Jersey
General Contractor	THE Partnership JV
Engineering Consultant	ILF Consulting Engineers
Construction Period	2009 - 2010
Project Type	Rail Tunnel
Size of Structure	- Palisades Tunnels (1.6km Length) - Hudson River Tunnels (2.3km Length) - Manhattan Tunnels (2km Length) - Station Cavern (29m Wide, 27m Height)
Main features in modelling	 Construction sequences of the subway complex Stability of lining structures and rock bolts
Description on this project	 NYPSE Caverns and Ancillary Tunnels Evaluated geotechnical ground properties, geotechnical/geological models developed Defined excavation stages/sequences Designed initial ground support Predicted surface settlements Provided Overbuild Criteria to specify magnitude, distribution and location of loading due to future overbuild along both sides of 34th Street

King's Cross Station

London, United Kingdom

ARUP

Owner	Network Rail
Architecture	John McAslan + Partners
Engineering Consultant	Arup/Morgan Sindall
Construction Period	2008 - 2013
Project Type	Railroad Station
Main features in modelling	 The section of the existing tunnel where the shaft intersects is strengthened with block work, The cylindrical section of the shaft is built with segmental lining. The tapered section of the shaft is built in 1 m deep stages and lined with sprayed concrete,
Description on this project	The redevelopment of King's Cross station in the city of London is turning a historic rall terminus into a dynamic transport hub. Arup's work as a lead consultant on King's Cross station embraced transport planning, multi-disciplinary engineering services, security, IT, lighting design, acoustics, visualization, and pedestrian modeling

Busan Subway Line 3 Tunnel

- Zone 321

Busan, Korea

Design for construction Performing construction stage analysis to check the settlement while checking the initial support capacity for the fan plant structure.

Overview

Two types of analysis were performed based on different 3D model files. The full underground structure was modeled to monitor the initial support capacity including rock bolts and shotcrete, at structural level. A construction sequences analysis of the fan plant was ran to obtain the general stability and settlements of the soil layers, at geotechnical level.

PROBLEM STATEMENT

Tunnel Section: Horseshoe Shape

Shotcrete Thickness: 0.3m

Rock bolts Section: Solid Round Diameter 0.025m Length 4m

Excavation Length for each stage: 4m

Non-Linear static Construction Stage Analysis

LET'S START MODELLING

3. SOIL STRUCTURE INTERACTION MODELLING AND ANALYSIS

CONTENTS

Session 3. SOIL STRUCTURE INTERACTION

Soil Structure Interaction
 SSI: Applications
 GTS NX Analysis Capabilities: Pile Raft Foundation
 Project accomplishments
 Problem Statement

Soil Structure Interaction

- What is SSI ?
- Interaction of Stiffness and Deformation between
 Structure and Soil

• Why SSI?

Supporting Soil,

- Generates Loading and
- Provides Resistance to Loading

 Necessary for Adequate Assessment of Stresses and Forces in the Supporting Structure Force on Deck and Pier depends on,

- Location of the foundation
- Flexibility of foundation
- Supporting Soil Behaviour

Soil Structure Interaction Methods

1. Substructure Method

Also known as Indirect or Superposition Method.

Soil and Structure Interaction is analyzed by separating them into two separate structural systems:

1) Free Field Analysis: The reaction / response of the soil is determined (mainly where the structure will be)

2) Structural Analysis: The soil can be modeled as spring damper system(impedance) with that response. The detailed structure is designed with the idealization of soil as independent damper spring

Example: Winkler Springs, Springs from Empirical Equations, etc

Soil Structure Interaction Methods

2. Direct Method

Soil and Structure- Single System

Seismic/ Other forces defined at the outer boundary of the single unified model

Responses of the soil and the structure- determined simultaneously

Numerical methods: Continuum Methods FEM, FDM

SSI: APPLICATIONS

SSI: Applications

• Considering the WHOLE Super Structure in Continuum modelling

The building along with foundation is considered. Hence Differential Displacement can be easily estimated which in real results in cracks in the building.

Regular Approach

Best Approach

SSI: Applications

• Effect of Tunnelling on Adjacent Structures

Adjacent Structures

SSI: Applications

• Design Optimization Studies- using Interoperable Midas Programs

SSI: Applications

• Design Optimization- Manual

Step-1: Foundation and Soil Modeling

Step-2: Load Table Import/Export Option. (Load imported into GTS NX via excel sheet from any Structural tool)

Step-3: Export the Stiffnesses back to Structural tool

GTS NX ANALYSIS CAPABILITIES

Pile Modelling Techniques

3D Solid + 3D Pile + Plane Interface

3D Solid + 1D Pile (Beam) + Pile Interface

Interactions

Pile Interface

Important To Create a 3D model For These Foundations As Pile Group Effect is Ignored In 2D Models.

odel Type	Name Pile_Interfa	ace_1 Color	-
eneral The	mal		
Ultimate Sh	ear Force	2000	kN/m²
Shear Stiffr	ness Modulus(Kt)	1000000	kN/m³
Function		🗎 Setting	- I
Normal Stif	fness Modulus(Kn)	1000000	kN/m³

Easy Inputs For Modelling Pile Behaviour Based On Design Needs

Point Spring Matrix Spring	ID 15 Name PIL	E TIP Color
Eastic Link Rigid Link Interface Shell Interface User Supplied Behavior for Shell Interfa Infinite Free Field	Tip Bearing Capacity Tip Spring Stiffness	4000 kN 160000 kN/m
Seepage Cut Off		

End Bearing Piles

Advanced Loading Features

- Directly add point loads, moments, surface loads etc. to the model
- Create Load Combinations
- Import Load Data from Excel

Loads acting at column locations on Raft

Post Processing Features

- Contours ٠
- Graphs ٠
- Animations ٠
- Tables ٠
- Cutting Plane ٠
- Sections Diagrams ٠
- Reports ٠

1.65e+004 3.3e+00

Result Tag/Probing

+36.09 +32.49 +28.88 +25.27 +21.66

0%18.05 0%18.05 0%14.44 0%14.44 0%17.22 0%7.22 0%3.61 +0.00

Z, Y

Result Extraction as Image, Animation, Video Excel, pdf, Word formats

Sectional View: Clipping Line/Plane

	No	Step	Step Value	Node: 6960 TZ TRANSLATION (V) (m)	
		Initial:INCR=1 (LOAD=1.000)		0.000000e+000	
	2	Bottom foundation:INCR=1 (LOAD=	1.000000e+000	0.000000e+000	
	3	Top construction:INCR=1 (LOAD=1.	1.000000e+000	0.000000e+000	
	4	Loading:INCR=1 (LOAD=0.033)	3.333330e-002	-1.812772e-004	
	5	Loading:INCR=2 (LOAD=0.067)	6.666670e-002	-3.625544e-004	
	6	Loading:INCR=3 (LOAD=0.100)	1.000000e-001	-5.438315e-004	
	7	Loading:INCR=4 (LOAD=0.133)	1.333330e-001	-7.251087e-004	
	8	Loading:INCR=5 (LOAD=0.167)	1.666670e-001	-9.063859e-004	
	9	Loading:INCR=6 (LOAD=0.200)	2.000000e-001	-1.087663e-003	
	10	Loading:INCR=7 (LOAD=0.233)	2.333330e-001	-1.268940e-003	
	11	Loading:INCR=8 (LOAD=0.267)	2.666670e-001	-1.450217e	Casting Distan
	12	Loading:INCR=9 (LOAD=0.300)	3.000000e-001	-1.631495e	Sorting Dialog
	13	Loading:INCR=10 (LOAD=0.333)	3.333330e-001	-1.812772e	Style Dialog
	14	Loading:INCR=11 (LOAD=0.367)	3.666670e-001	-1.994049e	Show Graph
	15	Loading:INCR=12 (LOAD=0.400)	4.000000e-001	-2.175326e	Short Stapilin
	16	Loading:INCR=13 (LOAD=0.433)	4.333330e-001	-2.356603e	Export to Excel
	17	Loading:INCR=14 (LOAD=0.467)	4.666670e-001	-2.537881e	
	18	Loading:INCR=15 (LOAD=0.500)	5.000000e-001	-2.719162e-003	
_					

Results extracted as Tables and Graphs Extracted results/graphs directly exported to excel

Post Processing Features

Load-Settlement Curves Extraction

Structural Forces Results for Piles and Raft

Post Processing Features

Pile Raft Foundation Modelling with imported Superstructure

Dubai Tower in Qatar

Doha, Qatar

Owner	Sama Dubai (Dubai International Properties)
Engineering Consultant	Hyder Consulting
General Contractor	Al Habtoor - Al Jaber Joint Venture
Architecture	RMJM
Project Type	Mixed-Use Building
Size of the Structure	439m Height (88-Story)
Main features in modelling	 Piled - raft foundation for high - rise building Analysis results for design (Settlements, Raft forces and bending moments, Pile forces and bending moments)
Description on this project	The proposed development for the Dubai Tower project comprises the construction of an approximately 80 floor high-rise tower with a mezzanine, ground floor and five basement levels. It will be the tallest structure in Qatar when it is complete. The tower was founded on soft sand and required the design of a piled raft in a 3D finite element model to fully understand the behavior.

Pentominium Residential **Development in UAE**

Dubai, United Arab Emirates

Owner	Trident International Holdings
General Contractor	Arabian Construction Company - Hitachi Plant Technologies
Engineering Consultant	Hyder Consulting
Construction Period	Under Construction
Project Type	Residential Building
Size of the Structure	516m Height (122-Story)
Main features in modelling	 Piled - raft foundation for high - rise building Analysis results for design (Settlements, raft forces and bending moments, pile forces and bending moments)
Description on this project	The Pentominium Residential Development is located on the west side of the creek in Dubai. The development comprises the construction of an approximately 120 story high-rise tower inter-linked by low level podium structure housing up to 7 basement levels. The Pentominium Tower will be founded on a piled raft and required a 3D finite element model to fully understand the behavior of the foundation interaction with surrounding soil.

Bridge on the River Rudavoi

- Cortina d'Ampezzo

Belluno, Italy

ULMA

Engineering Consultant	ULMA Construction
Size of the Structure	180m Total Length
Main features in modelling	 Construction stage analysis Stability analysis for the pier foundation of bridge
Description on this project	After the pier construction, the bridge was completed in three stages. The 70m long stretch between the abutment and the pier was built with horizontal beam - based formwork and full shoring. After concrete hardening and falsework removal, the same material was used in a symmetrical manner between the abutment and the pier on the other side of the bridge. A high capacity shoring tower on a temporary footing supports the central part of the bridge (40m).

OUDAYAS Tunnel - Royal Palace

Rabat, Morocco

Alpina

Owner	Royaume du Maroc – Agence pour l'Am nagement de la Vall e du Bouregreg
General Contractor	Pizzarotti
Engineering Consultant	Alpina
Construction Period	2007 - 2011
Project Type	Road Infrastructure
Main features in modelling	 Tunnel construction under the complex historical landmark Modeling of micropiles, berlin wall and slab
Description on this project	The new roadway project is characterized by an extension of tunnel entrance that lies underneath the Des Oudayas monument complex. The complex consists of two historic buildings, the fortress, the library, the walls of the Kasbah, and an Andalusian garden. The design of the Des Oudayas Tunnel was necessary to ensure the stability, integrity, and safety throughout all the excavation and construction phases given the excavation's location under the historic structure. The design had to additionally consider the interaction between two parallel 300 m tunnels with on-going traffic.

Cityringen Copenhagen Metro

Copenhagen, Denmark

🕒 Lombardi

Owner	Metroselskabet
Engineering Consultant	Lombardi
Construction Period	2011 - 2017
Project Type	Subway Station
Size of the Structure	15.5 km long twin single - track metro tunnels,
Main features in modelling	 Interaction between MIDAS family programs (Gen & GTS NX) Construction stage analysis for TBM
Description on this project	The Cityringen is a city circle metro - line, approximately 15,5 km long and will serve major areas of the city of Copenhagen including the Danish Parliament, the Central Station, the City Hall, existing major S - train and metro stations and national monuments. The line will have driverless communication - based train control system, with stewards on board. A round trip is expected to take 23 minutes. The headway interval is expected to be 200 sec., with 28 trains of 3 carriages running at 90 km/h.

PROBLEM STATEMENT

LET'S START MODELLING

4. GROUND IMPROVEMENT MODELLING AND ANALYSIS

CONTENTS

Session 4. GROUND IMPROVEMENT

GTS NX Modelling Features
 Analysis Capabilities
 Problem Statement

Ground Improvement

Modifying soil properties to enhance its performance

Addressed issues include poor bearing capacity, excessive settlements, etc

Examples for some Ground Improvement Methods:

Stone Columns Soil Mixing Jet Grouting Prefabricated Vertical Drains Vibration Techniques Ground Freezing Dynamic Compaction, etc

Geometry Modelling

- Complex 3D topography modelling using imported contour curves
- Supports .dxf, .dwg and other CAD format drawings import

Parasolid (9 to 34) Files (*.x_t*.xmt_txt*.x_b;*.xmt_bin) ACIS (R1 - 2022 1.0) Files (*.sat*.sab;*.asat*.asab) STEP (AP203, AP214, AP242) Files (*.stp;*.step) IGES (Up to 5.3) Files (*.igs;*.iges) Pro-E (16 - Creo 8.0) Files (*.prt*.prt*;*.asm;*.asm.*) CATIA V4 (CATIA 4.1.9 - 4.2.4) Files (*.model;*.exp;*.session) CATIA V4 (CATIA 4.1.9 - 4.2.4) Files (*.model;*.exp;*.session) CATIA V5 (V5 R8 - V5-6R2025) Files (*.CATPart*.CATProduct) SolidWorks (98 - 2022) Files (*.sldprt*.sldasm) Unigraphics (11 - NX2007) Files (*.prt) Inventor Part (V6 - V2022) Files (*.ipt) Inventor Assembly (V11 - V2022) Files (*.iam)

CAD Formats import

Material Models

Elastic
Tresca
von Mises
Mohr-Coulomb
Drucker Prager
Hoek Brown
Generalized Hoek Brown
Hyperbolic(Duncan-Chang E-v)
Hyperbolic(Duncan-Chang E-B)
Strain Softening
Modified Cam Clay
Jardine
D-min
Modified Mohr-Coulomb
Soft Soil
Soft Soil Creep
Modified UBCSAND
Sekiguchi-Ohta(Inviscid)
Sekiguchi-Ohta(Viscid)
Ramberg-Osgood
Bowl Model with RO
Hardin-Drnevich
Hardening Soil(small strain stiffness)
Generalized SCLAY1S
CWFS
Rankine
Concrete Smeared Crack
Concrete Damaged Plasticity
PM4Sand
GHE-S

Unit Weight(Saturated) Initial Void Ratio(eo) Unsaturated Property Drainage Parameters Drained Prained Undrained(Effective Stiffness/ Undrained(Effective Stiffness/ Undrained(Effective Stiffness/ Undrained(Consolidation Param Permeability Coefficients kx ky 1e-05 11 Void Ratio Dependency of Paspecific Storativity(Ss)	Effective Strength) (Indrained Strength) (Indrained Strength) (Indrained Strength) (Indrained Strength) neters (kz) (kz) (kz) (kz) (kz) (kz) (kz) (kz)	21 kN/m ³ 	General Over PreC Slope Slope Pc A	Porou r Conso)verbur e of Co e of Ov e of Cri Uliowab
Initial Void Ratio(eo) Initial Void Ratio(eo) Initial Void Ratio(eo) Inainage Parameters Inainad Indrained(Effective Stiffness/t Undrained(Effective Stiffness/t Undrained(Effective Stiffness/t Undrained(Effective Stiffness/t Indrained(Undrained Stiffness) Seepage & Consolidation Param Permeability Coefficients Kx ky Ie-05 11 Void Ratio Dependency of Pr Specific Storativity(Ss)	/Effective Strength) /Undrained Strength) s/Undrained Strength) neters le-05 le-05 'ermeability(ck) 5.230212 1/m	<pre>21 kV/m²</pre>	Over PreC Slope Slope Pc A	r Conso Overbur e of Co e of Ov e of Cri
Initial Void Ratio(eo) Unsaturated Property Drainage Parameters Drained Undrained(Effective Stiffness/ Undrained(Effective Stiffness/ Undrained(Effective Stiffness/ Undrained(Effective Stiffness) Seepage & Consolidation Param Permeability Coefficients kx ky 1e-05 1r Void Ratio Dependency of Pr Specific Storativity(Ss)	Effective Strength) (Undrained Strength) (Undrained Strength) neters kz te-05 1e-05 'ermeability(ck) 5.230212 1/m	5 m/sec	Over PreC Slope Slope Pc A	r Conso Dverbur e of Co e of Ov e of Cri
Unsaturated Property Drainage Parameters Drained Undrained(Effective Stiffness/t Undrained(Effective Stiffness/t Undrained(Undrained Stiffness Seepage & Consolidation Param Permeability Coefficients kx ky 1e-05 1 Void Ratio Dependency of Pr Specific Storativity(Ss)	Effective Strength) Undrained Strength) s/Undrained Strength) neters le-05 le-05 'ermeability(ck) 5.230212 1/m	5 m/sec	PreC Slope Slope Pc A	Dverbui e of Co e of Ov e of Cri
Drainage Parameters Drained Drained Undrained(Effective Stiffness,/ Undrained(Effective Stiffness,/ Undrained(Undrained Stiffness,/ Undrained(Undrained Stiffness,/ Undrained(Undrained Stiffness,/ Undrained(Undrained Stiffness,/ Undrained(Effective Stiffn	/Effective Strength) /Jndrained Strength) s/Lindrained Strength) neters le-05	5 m/sec	Slope Slope Slope Pc	e of Co e of Ov e of Cr Ullowab
Drained Drained Drained Drained Undrained(Effective Stiffness/i Undrained(Effective Stiffness/i Undrained(Undrained Stiffness/i Undrained(Undrained Stiffness/i Undrained(Undrained Stiffness/i Undrained(Undrained Stiffness) Seepage & Consolidation Param Permeability Coefficients kx ky le-05 la Void Ratio Dependency of Pa Specific Storativity(Ss)	/Effective Strength) (Undrained Strength) s/Undrained Strength) neters kz le-05 le-05 le-05 vermeability(ck) 5.230212 1/m	5 m/sec	Slope Slope Pc A	e of Co e of Ov e of Cri
Undrained(Effective Stiffmess/ Undrained(Undrained Stiffness/ Undrained(Undrained Stiffness/ Undrained(Undrained Stiffness/ Seepage & Consolidation Param Permeability Coefficients kx ky ie-05 in Void Ratio Dependency of Po Specific Storativity(Ss)	/Effective Strength) /Undrained Strength) s/Undrained Strength) meters ////////////////////////////////////	5 m/sec	Slope Slope Pc	e of Ov e of Cri llowab
Seepage & Consolidation Param Permeability Coefficients kx ky 1e-05 1 Void Ratio Dependency of Perspecific Storativity(Ss)	kz 1e-05 1e-05 'ermeability(ck) 5.230212 1/m	5 m/sec	Slope Pc	e of Cr
Permeability Coefficients kx ky 1e-05 1a Void Ratio Dependency of Prospecific Storativity(Ss) 1a	le-05 le-05 2ermeability(ck) 5.230215 1/m	5 m/sec	Pc	Lilowab
Void Ratio Dependency of Po Specific Storativity(Ss)	1e-05 1e-05 Permeability(ck) 5.230215 1/m	5 m/sec		- Allowab
Void Ratio Dependency of Pr Specific Storativity(Ss)	Permeability(ck) 5.230213 1/m	0.5	- A	\llowab
Specific Storativity(Ss)	5.230213 1/m			
Specific Storativity(SS)	5.250215 I/m	1.1m		
Ŷ		normal con	solidation	

dified Cam Clay	~	Structure	Model Type Soft Soil	✓ Structure
Non-Linear Therma	I		General Porous Non-Linear Thermal	
ation Ratio(OCR)	8		Over Consolidation Ratio(OCR)	1
Pressure(POP)	0	kN/m²	PreOverburden Pressure(POP)	0 kN/m²
l Line(λ)	0.3		Slope of Consol Line(λ)	0.3
Consol Line(k)	0.05		Slope of Over Consol Line(k)	0.05
State Line(M)	1		K0nc 0.	412214748
r Defined	0	kN/m²	Pc User Defined	0 kN/m2
ensile Stress	0	kN/m²	Cap Shape Factor(o)	0.22
			Cohesion(C)	1 kN/m²
			Friction Angle(Φ)	36 [deg]
			Dilatancy Angle	36 [deg]
			Tensile Strength	0 kN/m²

Ground Improvement- Drains Simulation

- **Draining condition**: Seepage Boundary used to simulate Drains(excess pore pressure is zero for this domain)
- Non-Consolidation: Used to model nonconsolidation embankment layers

Ground Improvement- Stone Columns

Ground Improvement- Stone Columns

Ground Improvement- Suction Drains & Jet Grouting

- Change Property: To define change in property of soil materials to grout, etc to simulate Jet Grouting Technique in Consolidation Construction Stage Analysis
- **Nodal Head**: To define water head value at specific nodes (Negative Water Head equivalent to Suction Pressure can be input to simulate Suction Drain Technique)

Suction Drain Simulation

Boundary Set Suction

Consolidation Analysis

- Consolidation Analysis in Construction Stages
- User Defined or Auto Time Step input based on Max Pore Pressure Changes per step
- Consolidation Analysis coupled with SRM
- Total/ Pore Pressure Head results, Deformations, Stresses, Strains, etc- all the results available for each Time Step

All-in-One FEM based 3D Geotechnical Analysis Software

Post Processing

- Data Output at all nodes/elements
- Iteration vs Safety Factor Graph(SRM)
- Cutting Line/Plane Diagram with Tabular output

Probe: Check results at required nodes/elements

Safety Factor vs. Maximum Displacement

Results extracted as Tables and Graphs Extracted results/graphs directly exported to excel

Result Extraction as Image, Animation, Excel, pdf, Word formats

Sectional view: Clipping Line/Plane

Post Processing

- Iso Value Surface: Displays domain inside/outside a preset specified value range
- Report Generation: Excel/PDF/Word
- Geogrid Element Results: Axial Force, Stress, Strain Results
- Stage Bar: Check the results directly without using workstree

Geogrid Element Results

Iso Value Surface

Excel report Generation

Stage Bar

PROBLEM STATEMENT

Ground Improvement using PVDs

Drain spacing 2m

Embankment Height 10m

Modified Cam Clay (Undrained) used to model clay layers

Consolidation Analysis in Construction Stages

Total Consolidation Time considered: about 250 days

LET'S START MODELLING